Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to collect, manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. Participants in the interviews that we organized preparing this proposal indicated a need for guidance on how to develop DAC within their organization given their unique context (e.g. age and experience of the workforce, presence of legacy systems, high daily workload, lack of knowledge of digitalization). While a lot of attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC. From a structure perspective, the objective of the KIEM proposal will be to explore and solidify the partnership between Breda University of Applied Sciences (BUas), Avans University of Applied Sciences (Avans), Logistics Community Brabant (LCB), van Berkel Logistics BV, Smink Group BV, and iValueImprovement BV. This partnership will be used to develop the preliminary roadmap and pre-test it using action methodology. The action research protocol and preliminary roadmap thereby developed in this KIEM project will form the basis for a subsequent RAAK proposal.
Aanleiding Nieuwsuitgeverijen bevinden zich in zwaar weer. Economische malaise en toegenomen concurrentie in het pluriforme medialandschap dwingen uitgeverijen om enerzijds kosten te besparen en tegelijkertijd te investeren in innovatie. De verdere automatisering van de nieuwsredactie vormt hierbij een uitdaging. Buiten de branche ontstaan technieken die uitgeverijen hierbij zouden kunnen gebruiken. Deze zijn nog niet 'vertaald' naar gebruiksvriendelijke systemen voor redactieprocessen. De deelnemers aan het project formuleren voor dit braakliggend terrein een praktijkgericht onderzoek. Doelstelling Dit onderzoek wil antwoord geven op de vraag: Hoe kunnen bewezen en nieuw te ontwikkelen technieken uit het domein van 'natural language processing' een bijdrage leveren aan de automatisering van een nieuwsredactie en het journalistieke product? 'Natural language processing' - het automatisch genereren van taal - is het onderwerp van het onderzoek. In het werkveld staat deze ontwikkeling bekend als 'automated journalism' of 'robotjournalistiek'. Het onderzoek richt zich enerzijds op ontwikkeling van algoritmes ('robots') en anderzijds op de impact van deze technologische ontwikkelingen op het nieuwsveld. De impact wordt onderzocht uit zowel het perspectief van de journalist als de nieuwsconsument. De projectdeelnemers ontwikkelen binnen dit onderzoek twee prototypes die samen het automated-journalismsysteem vormen. Dit systeem gaat tijdens en na het project gebruikt worden door onderzoekers, journalisten, docenten en studenten. Beoogde resultaten Het concrete resultaat van het project is een prototype van een geautomatiseerd redactiesysteem. Verder levert het project inzicht op in de verankering van dit soort systemen binnen een nieuwsredactie. Het onderzoek biedt een nieuw perspectief op de manier waarop de nieuwsconsument de ontwikkeling van 'automated journalism' in Nederland waardeert. Het projectteam deelt de onderzoekresultaten door middel van presentaties voor de uitgeverijbranche, presentaties op wetenschappelijke conferenties, publicaties in (vak)tijdschriften, reflectiebijeenkomsten met collega-opleidingen en een samenvattende white paper.
Climate change is one of the most critical global challenges nowadays. Increasing atmospheric CO2 concentration brought by anthropogenic emissions has been recognized as the primary driver of global warming. Therefore, currently, there is a strong demand within the chemical and chemical technology industry for systems that can covert, capture and reuse/recover CO2. Few examples can be seen in the literature: Hamelers et al (2013) presented systems that can use CO2 aqueous solutions to produce energy using electrochemical cells with porous electrodes; Legrand et al (2018) has proven that CDI can be used to capture CO2 without solvents; Shu et al (2020) have used electrochemical systems to desorb (recover) CO2 from an alkaline absorbent with low energy demand. Even though many efforts have been done, there is still demand for efficient and market-ready systems, especially related to solvent-free CO2 capturing systems. This project intends to assess a relatively efficient technology, with low-energy costs which can change the CO2 capturing market. This technology is called whorlpipe. The whorlpipe, developed by Viktor Schauberger, has shown already promising results in reducing the energy and CO2 emissions for water pumping. Recently, studies conducted by Wetsus and NHL Stenden (under submission), in combination with different companies (also members in this proposal) have shown that vortices like systems, like the Schauberger funnel, and thus “whorlpipe”, can be fluid dynamically represented using Taylor-Couette flows. This means that such systems have a strong tendency to form vortices like fluid-patterns close to their air-water interface. Such flow system drastically increase advection. Combined with their higher area to volume ratio, which increases diffusion, these systems can greatly enhance gas capturing (in liquids), and are, thus, a unique opportunity for CO2 uptake from the air, i.e. competing with systems like conventional scrubbers or bubble-based aeration.