Dienst van SURF
© 2025 SURF
The Maritime Spatial Planning (MSP) Challenge game: Short Sea Shipping (SSS) Edition is a table-top strategy board game, designed for policy-makers and stakeholders involved in MSP, short-sea shipping and the Blue Economy. It is a ‘serious game’, allowing the development of a better understanding of the issues involved in MSP through creative and imaginative role playing, taking into account the relevant professional and personal experience of the players. The authors present and discuss the use of the MSP Challenge board game to test how, and to what extent, the concept can help stakeholders understand Maritime Spatial Planning.
LINK
Circular BIOmass CAScade to 100% North Sea Region (NSR) economic activity and growth are mostly found in urban areas. Rural NSR regions experience population decline and negative economic growth. The BIOCAS project expects revitalizing and greening of rural areas go hand in hand. BIOCAS will develop rural areas of the NSR into smart specialized regions for integrated and local valorization of biomass. 13 Commercial running Bio-Cascade-Alliances (BCA’s) will be piloted, evaluated and actively shared in the involved regions. These proven concepts will accelerate adoption of high to low value bio-cascading technologies and businesses in rural regions. The project connects 18 regional initiatives around technologies, processes, businesses for the conversion of biomass streams. The initiatives collaborate in a thematic approach: Through engineering, value chain assessments, BCA’s building, partners tackle challenges that are shared by rural areas. I.e. unsustainable biomass use, a mineral surplus and soil degradation, deprivation of potentially valuable resources, and limited involvement of regional businesses and SMEs in existing bio-economy developments. The 18 partners are strongly embedded in regional settings, connected to many local partners. They will align stakeholders in BCA’s that would not have cooperated without BIOCAS interventions. Triple helix, science, business and governmental input will realize inclusive lasting bio cascade businesses, transforming costly waste to resources and viable business.Interreg IVB North Sea Region Programme: €378,520.00, fEC % 50.00%1/07/17 → 30/06/21
Coastal nourishments, where sand from offshore is placed near or at the beach, are nowadays a key coastal protection method for narrow beaches and hinterlands worldwide. Recent sea level rise projections and the increasing involvement of multiple stakeholders in adaptation strategies have resulted in a desire for nourishment solutions that fit a larger geographical scale (O 10 km) and a longer time horizon (O decades). Dutch frontrunner pilot experiments such as the Sandmotor and Ameland inlet nourishment, as well as the Hondsbossche Dunes coastal reinforcement project have all been implemented from this perspective, with the specific aim to encompass solutions that fit in a renewed climate-resilient coastal protection strategy. By capitalizing on recent large-scale nourishments, the proposed Coastal landSCAPE project C-SCAPE will employ and advance the newly developed Dynamic Adaptive Policy Pathways (DAPP) approach to construct a sustainable long-term nourishment strategy in the face of an uncertain future, linking climate and landscape scales to benefits for nature and society. Novel long-term sandy solutions will be examined using this pathways method, identifying tipping points that may exist if distinct strategies are being continued. Crucial elements for the construction of adaptive pathways are 1) a clear view on the long-term feasibility of different nourishment alternatives, and 2) solid, science-based quantification methods for integral evaluation of the social, economic, morphological and ecological outcomes of various pathways. As currently both elements are lacking, we propose to erect a Living Lab for Climate Adaptation within the C-SCAPE project. In this Living Lab, specific attention is paid to the socio-economic implications of the nourished landscape, as we examine how morphological and ecological development of the large-scale nourishment strategies and their design choices (e.g. concentrated vs alongshore uniform, subaqueous vs subaerial, geomorphological features like artificial lagoons) translate to social acceptance.
In Amsterdam's neighbourhoods, much of the waste that is disposed has the potential of becoming something else by means of recycling or upcycling. Zero Waste lab –which is part of the organization De Gezonde Stad- is a place where inhabitants can bring their own separated waste in exchange for value coins. Now, Zero Waste Lab now wants to take this a step forward and further develop their own project: from recycling to upcycling waste. In this endeavour, HvA will collaborate by researching the possibilities for upcycling a local waste stream by means of digital production pro-cesses, as well as ways of involving the neighbourhood. Because it is of vital importance for the project not only to be technically possible, but also scalable and economically feasible, Zero Waste Lab and HvA have asked for partnership to the company Verdraaid Goed. This partnership and specific case study, presented here as ‘Wood for the neighborhood’ can be summa-rized in four main goals: • (Production) Explore the design and manufacturing possibilities of using digital production to upcycle a local wood waste stream (with an industrial robotic arm) • (Design) Show how explorative research, when carried on from the beginning of the de-sign process, can bring great added value to the development of project concepts. • (Social) Demonstrate that involving stakeholders early in the process of reusing and de-signing with waste materials can shape the future in new directions • (All three) Highlight how this case study is relevant and fits the principles of the circular economy.