Dienst van SURF
© 2025 SURF
ABSTRACT Purpose: This short paper describes the dashboard design process for online hate speech monitoring for multiple languages and platforms. Methodology/approach: A case study approach was adopted in which the authors followed a research & development project for a multilingual and multiplatform online dashboard monitoring online hate speech. The case under study is the project for the European Observatory of Online Hate (EOOH). Results: We outline the process taken for design and prototype development for which a design thinking approach was followed, including multiple potential user groups of the dashboard. The paper presents this process's outcome and the dashboard's initial use. The identified issues, such as obfuscation of the context or identity of user accounts of social media posts limiting the dashboard's usability while providing a trade-off in privacy protection, may contribute to the discourse on privacy and data protection in (big data) social media analysis for practitioners. Research limitations/implications: The results are from a single case study. Still, they may be relevant for other online hate speech detection and monitoring projects involving big data analysis and human annotation. Practical implications: The study emphasises the need to involve diverse user groups and a multidisciplinary team in developing a dashboard for online hate speech. The context in which potential online hate is disseminated and the network of accounts distributing or interacting with that hate speech seems relevant for analysis by a part of the user groups of the dashboard. International Information Management Association
LINK
It is crucial that ASR systems can handle the wide range of variations in speech of speakers from different demographic groups, with different speaking styles, and of speakers with (dis)abilities. A potential quality-of-service harm arises when ASR systems do not perform equally well for everyone. ASR systems may exhibit bias against certain types of speech, such as non-native accents, different age groups and gender. In this study, we evaluate two widely-used neural network-based architectures: Wav2vec2 and Whisper on potential biases for Dutch speakers. We used the Dutch speech corpus JASMIN as a test set containing read and conversational speech in a human-machine interaction setting. The results reveal a significant bias against non-natives, children and elderly and some regional dialects. The ASR systems generally perform slightly better for women than for men.
MULTIFILE
Abstract van Poster presentatie. Our student-interpreters feel ill prepared for assignments that involve sign supported speech (Anonymous, 2015). This is probably due to the fact that there is no single way of communicating in sign supported speech (Sutton-Spence & Woll, 1999). Our study investigates if and how we could prepare our students within a fouryear bachelor curriculum.
"Speak the Future" presents a novel test case at the intersection of scientific innovation and public engagement. Leveraging the power of real-time AI image generation, the project empowers festival participants to verbally describe their visions for a sustainable and regenerative future. These descriptions are instantly transformed into captivating imagery using SDXL Turbo, fostering collective engagement and tangible visualisation of abstract sustainability concepts. This unique interplay of speech recognition, AI, and projection technology breaks new ground in public engagement methods. The project offers valuable insights into public perceptions and aspirations for sustainability, as well as understanding the effectiveness of AI-powered visualisation and regenerative applications of AI. Ultimately, this will serve as a springboard for PhD research that will aim to understand How AI can serve as a vehicle for crafting regenerative futures? By employing real-time AI image generation, the project directly tests its effectiveness in fostering public engagement with sustainable futures. Analysing participant interaction and feedback sheds light on how AI-powered visualisation tools can enhance comprehension and engagement. Furthermore, the project fosters public understanding and appreciation of research. The interactive and accessible nature of "Speak the Future" demystifies the research process, showcasing its relevance and impact on everyday life. Moreover, by directly involving the public in co-creating visual representations of their aspirations, the project builds an emotional connection and sense of ownership, potentially leading to continued engagement and action beyond the festival setting. "Speak the Future" promises to be a groundbreaking initiative, bridging the gap between scientific innovation and public engagement in sustainability discourse. By harnessing the power of AI for collective visualisation, the project not only gathers valuable data for researchers but also empowers the public to envision and work towards a brighter, more sustainable future.