Dienst van SURF
© 2025 SURF
A series of new, easily synthesized C60-fullerene derivatives is introduced that allow for optimization of the interactions between rr-P3HT and the fullerene by systematic variation of the size of the ester group. Two compounds gave overall cell efficiencies of 4.8%, clearly outperforming [60]PCBM which gives 4.3% under identical conditions.
toegang via de HU Bibliotheek op het HU netwerk https://doi.org/10.1002/solr.201600015 From the article: "Abstract Inspired by the works of the Dutch artist Piet Mondrian an Electric Mondrian has been developed built up from luminescent solar concentrator elements. It is based on differently colored square and rectangular elements of standard sizes based on multiples of 15 cm, as this the standard size of the c‐Si cells that are used at the sides of the elements. This paper describes the design requirements and choices that have been made in detail. The design is based on commercially available luminescent concentrator Perspex plates and solar cells. Performance testing showed that at total size of 1 m2 a light‐to‐electric power device efficiency is measured of 0.2%: the Electric Mondrian thus provides ∼2 W in full sun, and two mobile devices can be charged directly or via a built‐in battery. The Electric Mondrian functions as a decorative energy‐harvesting element indoors in the urban environment, and can be marketed as such. " https://www.narcis.nl/publication/RecordID/oai%3Adspace.library.uu.nl%3A1874%2F358617
Vanuit het bedrijfsleven is vraag naar het ontwikkelen van coatings met specifieke hoogwaardige eigenschappen. Een technisch haalbare en kosten efficiënte methode om dit te doen is door het inmengen van nanodeeltjes in coatings of in polymeren. Op dit moment is de beschikbaarheid (op grotere schaal) van hoogwaardige nanodeeltjes (grootte en deeltjesgrootte distributie) echter nog een knelpunt. Microreactortechnologie kan hiervoor een goede uitkomst bieden. In een microreactor kunnen reactiecondities zeer goed gecontroleerd worden en daardoor zal de reproduceerbaarheid goed zijn. Ook is het eenvoudig om een reactie in een microreactor op te schalen naar een groter volume. In het RAAK-MKB project Flow4Nano worden 2 sleutel technologieën van het lectoraat Material Sciences van Zuyd Hogeschool bij elkaar gebracht: nanotechnologie en microreactor technologie. In dit project zal de focus liggen op de toepassing van nanodeeltjes in optische coating voor zonnecellen en voor glastuinbouw. De toepassing in zonnecellen is een focus van het lectoraat Zonne Energie in de Gebouwde Omgeving van Zuyd. De toepassing in de glastuinbouw is een focus van de Hogeschool Arnhem Nijmegen in het lectoraat duurzame energie. De onderzoekvraag voor dit project is: “Can we produce nanoparticles with high specificity for use in advanced coatings and polymers with tailored functionalities for application in greenhouses and solar cells using (micro)flow?” De consortiumleden Zuyd Hogeschool / lectoraat material sciences (microreactor technologie / nanotechnologie), TNO/brightlands Material Centre (nanomaterialen voor energietoepassingen), Kriya Materials (producent nanodeeltjes) en Chemtrix (microflow apparatuur) zullen TiO2 en ZnO nanodeeltjes maken en karakteriseren. De consortiumpartners Zuyd / lectoraat Zonne-energie in de duurzaam gebouwde omgevingen HAN (lectoraat duurzame energie) zullen de geproduceerde nanodeeltjes testen in optisch actieve coatings voor toepassingen in zonne-energie en glastuinbouw respectievelijk. De consortiumpartner NanoHouse zal het stuk disseminatie op zich nemen.
Zuyd University and partners will develop novel coatings that contribute to a reduction in energy consumption of houses and buildings. The built environment currently consumes 46% of all energy, mainly for heating and cooling. A strong reduction is required as part of the transition towards sustainable energy. This is expressed by ambitious targets set by the Parkstad region, which has set itself the target to be energy neutral in 2040. For the Window of the Future Zuyd University (lectoraat Nanostructured Materials) and DWI (post-doc) aims to develop infrared regulating coatings that keep the heat inside in winter and outside in summer. These coatings are expected to strongly contribute to reduction of energy consumption. We will develop coating materials for application on glass windows, which are transparent for visible light to allow maximal daylight entering the building, and simultaneously regulate the transmission and reflection of IR heat. Kriya and Physee (SMEs) will advise Zuyd on technical and economic challenges related to the development of IR regulating glass windows. OMT Solutions (SME) and SGS Intron will advise on characterization and the performance validation. The need for such windows is confirmed by TNO/The Brightlands Materials Center as central challenge in their Optoelectronics program. They contribute largely to this project. Large demonstrator windows will be coated, and installed in test houses for real-life testing and quantification of the energy reduction. Zuyd (lectoraat Solar Energy in the Built Environment) will quantify the impact of smart IR regulating windows on the energy transition by comparing their impact to other available technologies, e.g. solar cells. In this quantification, Zuyd will focus on the Parkstad region. Together with Parkstad and Maastricht University (Ph.D. student), Zuyd will also quantify the socio-economic impact, and promote the societal acceptance of smart IR regulating windows.