Dienst van SURF
© 2025 SURF
CC-BY Dit artikel is overgenomen van https://www.frontiersin.org/journals/neurorobotics There is a growing international interest in developing soft wearable robotic devices to improve mobility and daily life autonomy as well as for rehabilitation purposes. Usability, comfort and acceptance of such devices will affect their uptakes in mainstream daily life. The XoSoft EU project developed a modular soft lower-limb exoskeleton to assist people with low mobility impairments. This paper presents the bio-inspired design of a soft, modular exoskeleton for lower limb assistance based on pneumatic quasi-passive actuation. The design of a modular reconfigurable prototype and its performance are presented. This actuation centers on an active mechanical element to modulate the assistance generated by a traditional passive component, in this case an elastic belt. This study assesses the feasibility of this type of assistive device by evaluating the energetic outcomes on a healthy subject during a walking task. Human-exoskeleton interaction in relation to task-based biological power assistance and kinematics variations of the gait are evaluated. The resultant assistance, in terms of overall power ratio (Λ) between the exoskeleton and the assisted joint, was 26.6% for hip actuation, 9.3% for the knee and 12.6% for the ankle. The released maximum power supplied on each articulation, was 113.6% for the hip, 93.2% for the knee, and 150.8% for the ankle.
MULTIFILE
In this presentation of her current research project Rebecca Louise Breuer questions the common enhancement of the body through, for instance, self-tracking, data collecting and monitoring of everyday and athletic movement. She attempts to provide an alternative perspective through discussing the concept of uncommon sense by turning to (micro-)phenomenological philosophical concepts as presented by Gilles Deleuze, Hermann Schmitz, Claire Petitmengin and Peter Sloterdijk. The case study used during this presentation, which will sketch an artistic, creative alternative to common sensoring devices, is found in the sound producing pressure sensors incorporated in the Lace Sensor Dresses by Anja Hertenberger and Meg Grant, artists working in the field of e-textiles and wearable electronics.
Wearable technologies are being implemented in the health and medical context with increasing frequency. Such technologies offer valuable opportunities to stimulate self-management in these domains. In this context, engagement plays a crucial role. An engaged patient is a patient who is emotionally involved and committed to the therapy or care process. Particularly for children who have to follow some sort of therapy, engagement is important to ensure a successful outcome of the therapy. To design for engagement, a framework based on theories of motivation in child therapy was developed. This framework was applied to the design of a wearable breathing trainer for children with asthma and dysfunctional breathing. As such, the present paper provides knowledge about the implementation of theory on engagement and motivation in design. Expert and first user evaluations found that the resulting prototype is appealing, perceived as useful, and may engage children in breathing training and stimulate self-management. CC BY (https://creativecommons.org/licenses/by/4.0/)
MULTIFILE