Dienst van SURF
© 2025 SURF
Posterpresentatie gegeven tijdens bezoek SBE (Samenwerkende Bedrijven Eemsdelta) aan de Hanzehogeschool
Smart Materials, book of ideas is het resultaat van en unieke samenwerking. Deskundigen en leveranciers van smart materials, designers van drie Twentse ontwerpbureaus en studenten Industrieel Product Ontwerpen van Saxion twee intensieve dagen met veel plezier samengewerkt aan dit “Book of Ideas”. Het project “Smart Materials, Book of Ideas” is een van de deelprojecten van het RAAK project “Materialen in Ontwerp” dat van januari 2007 tot medio 2008 gelopen heeft bij het Saxion Kenniscentrum Design en Technologie. Het doel van dit project is het expliciet onder de aandacht brengen van de mogelijkheden van een nieuwe klasse materialen voor het MKB: de “Smart Materials”. Alles is “smart” tegenwoordig en iedereen heeft het over nieuwe mogelijkheden, maar over wat voor materialen en eigenschappen hebben we het eigenlijk? Het is de bedoeling niet alleen een droge opsomming te geven van de eigenschappen en mogelijkheden van smart materials. De mogelijkheden die deze nieuwe materialen kunnen bieden worden tastbaar gemaakt door allerlei creatieve toepassingen te laten zien in (verbeterde) bestaande producten en geheel nieuwe concepten. Op deze wijze wordt geïllustreerd hoe deze nieuwe materialen kunnen bijdragen aan de functionaliteit van een product. De creatieve toepassingen zijn het resultaat van de brainstorm-tweedaagse met materiaaldeskundigen, designers en studenten ‘Industrieel Product Ontwerpen’ (IPO). Met dit boekwerkje wil het Saxion Kenniscentrum Design en Technologie bereiken dat productontwerpers en met name het MKB geïnteresseerd raakt in de mogelijkheden die smart materials direct of in toekomst kunnen bieden. Er ligt voor de bedrijven een grote kans om met deze nieuwe materialen succesvolle innovatieve producten te ontwikkelen.
MULTIFILE
Recycling of plastics plays an important role to reach a climate neutral industry. To come to a sustainable circular use of materials, it is important that recycled plastics can be used for comparable (or ugraded) applications as their original use. QuinLyte innovated a material that can reach this goal. SmartAgain® is a material that is obtained by recycling of high-barrier multilayer films and which maintains its properties after mechanical recycling. It opens the door for many applications, of which the production of a scoliosis brace is a typical example from the medical field. Scoliosis is a sideways curvature of the spine and wearing an orthopedic brace is the common non-invasive treatment to reduce the likelihood of spinal fusion surgery later. The traditional way to make such brace is inaccurate, messy, time- and money-consuming. Because of its nearly unlimited design freedom, 3D FDM-printing is regarded as the ultimate sustainable technique for producing such brace. From a materials point of view, SmartAgain® has the good fit with the mechanical property requirements of scoliosis braces. However, its fast crystallization rate often plays against the FDM-printing process, for example can cause poor layer-layer adhesion. Only when this problem is solved, a reliable brace which is strong, tough, and light weight could be printed via FDM-printing. Zuyd University of Applied Science has, in close collaboration with Maastricht University, built thorough knowledge on tuning crystallization kinetics with the temperature development during printing, resulting in printed products with improved layer-layer adhesion. Because of this knowledge and experience on developing materials for 3D printing, QuinLyte contacted Zuyd to develop a strategy for printing a wearable scoliosis brace of SmartAgain®. In the future a range of other tailor-made products can be envisioned. Thus, the project is in line with the GoChem-themes: raw materials from recycling, 3D printing and upcycling.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
Nowadays, there is particular attention towards the additive manufacturing of medical devices and instruments. This is because of the unique capability of 3D printing technologies for designing and fabricating complex products like bone implants that can be highly customized for individual patients. NiTi shape memory alloys have gained significant attention in various medical applications due to their exceptional superelastic and shape memory properties, allowing them to recover their original shape after deformation. The integration of additive manufacturing technology has revolutionized the design possibilities for NiTi alloys, enabling the fabrication of intricately designed medical devices with precise geometries and tailored functionalities. The AM-SMART project is focused on exploring the suitability of NiTi architected structures for bone implants fabricated using laser powder bed fusion (LPBF) technology. This is because of the lower stiffness of NiTi alloys compared to Ti alloys, closely aligning with the stiffness of bone. Additionally, their unique functional performance enables them to dissipate energy and recover the original shape, presenting another advantage that makes them well-suited for bone implants. In this investigation, various NiTi-based architected structures will be developed, featuring diverse cellular designs, and their long-term thermo-mechanical performance will be thoroughly evaluated. The findings of this study underscore the significant potential of these structures for application as bone implants, showcasing their adaptability for use also beyond the medical sector.