Dienst van SURF
© 2025 SURF
OBJECTIVE: The aim of this study was to explore the longitudinal relationship between sitting time on a working day and vitality, work performance, presenteeism, and sickness absence.METHODS: At the start and end of a five-month intervention program at the workplace, as well as 10 months after the intervention, sitting time and work-related outcomes were measured using a standardized self-administered questionnaire and company records. Generalized linear mixed models were used to estimate the longitudinal relationship between sitting time and work-related outcomes, and possible interaction effects over time.RESULTS: A significant and sustainable decrease in sitting time on a working day was observed. Sitting less was significantly related to higher vitality scores, but this effect was marginal (b = -0.0006, P = 0.000).CONCLUSIONS: Our finding of significant though marginal associations between sitting time and important work-related outcomes justifies further research.
BACKGROUND: Hospital stays are associated with high levels of sedentary behavior and physical inactivity. To objectively investigate physical behavior of hospitalized patients, these is a need for valid measurement instruments. The aim of this study was to assess the criterion validity of three accelerometers to measure lying, sitting, standing and walking. METHODS: This cross-sectional study was performed in a university hospital. Participants carried out several mobility tasks according to a structured protocol while wearing three accelerometers (ActiGraph GT9X Link, Activ8 Professional and Dynaport MoveMonitor). The participants were guided through the protocol by a test leader and were recorded on video to serve as reference. Sensitivity, specificity, positive predictive values (PPV) and negative predictive values (NPV) were determined for the categories lying, sitting, standing and walking. RESULTS: In total 12 subjects were included with a mean age of 49.5 (SD 21.5) years and a mean body mass index of 23.8 kg/m2 (SD 2.4). The ActiGraph GT9X Link showed an excellent sensitivity (90%) and PPV (98%) for walking, but a poor sensitivity for sitting and standing (57% and 53%), and a poor PPV (43%) for sitting. The Activ8 Professional showed an excellent sensitivity for sitting and walking (95% and 93%), excellent PPV (98%) for walking, but no sensitivity (0%) and PPV (0%) for lying. The Dynaport MoveMonitor showed an excellent sensitivity for sitting (94%), excellent PPV for lying and walking (100% and 99%), but a poor sensitivity (13%) and PPV (19%) for standing. CONCLUSIONS: The validity outcomes for the categories lying, sitting, standing and walking vary between the investigated accelerometers. All three accelerometers scored good to excellent in identifying walking. None of the accelerometers were able to identify all categories validly.
Stroke is the second most common cause of death and the third leading cause of disability worldwide,1,2 with the burden expected to increase during the next 20 years.1 Almost 40% of the people with stroke have a recurrent stroke within 10 years,3 making secondary prevention vital.3,4 High amounts of sedentary time have been found to increase the risk of cardiovascular disease,5–11 particularly when the sedentary time is accumulated in prolonged bouts.12–15 Sedentary behavior, is defined as “any waking behavior characterized by an energy expenditure ≤1.5 Metabolic Equivalent of Task (METs) while in a sitting, reclining or lying posture”.16,17 Studies in healthy people, as well as people with diabetes and obesity, have shown that reducing the total amount of sedentary time and/or breaking up long periods of uninterrupted sedentary time, reduces metabolic risk factors associated with cardiovascular disease.6,9,10,12–15 Recent studies have shown that people living in the community after stroke spend more time each day sedentary, and more time in uninterrupted bouts of sedentary time compared to age-matched healthy peers.18–20 Reducing sedentary time and breaking up long sedentary bouts with short bursts of activity may be a promising intervention to reduce the risk of recurrent stroke and other cardiovascular diseases in people with stroke. To develop effective interventions, it is important to understand the factors associated with sedentary time in people with stroke. Previous studies have found associations between self-reported physical function after stroke and total sedentary time, but inconsistent results with regards to the relationship of age, stroke severity, and walking speed with sedentary time.20,21 These results are from secondary analyses of single-site observational studies, not powered to address associations, and inconsistent in the methods used to determine waking hours; thus making direct comparisons between studies difficult.20,21 Individual participant data pooling, with consistent processing of wake time data, allows novel exploratory analyses of larger datasets with greater power. By pooling all available individual participant data internationally, this study aimed to comprehensively explore the factors associated with sedentary time in community-dwelling people with stroke. Specifically, our research questions were: (1) What factors are associated with total sedentary time during waking hours after stroke? (2) What factors are associated with time spent in prolonged sedentary bouts during waking hours?
Movebite aims to combat the issue of sedentary behavior prevalent among office workers. A recent report of the Nederlandse Sportraad reveal a concerning trend of increased sitting time among Dutch employees, leading to a myriad of musculoskeletal discomforts and significant health costs for employers due to increased sick leave. Recognizing the critical importance of addressing prolonged sitting in the workplace, Movebite has developed an innovative concept leveraging cutting-edge technology to provide a solution. The Movebite app seamlessly integrates into workplace platforms such as Microsoft Teams and Slack, offering a user-friendly interface to incorporate movement into their daily routines. Through scalable AI coaching and real-time movement feedback, Movebite assists individuals in scheduling and implementing active micro-breaks throughout the workday, thereby mitigating the adverse effects of sedentary behavior. In collaboration with the Avans research group Equal Chance on Healthy Choices, Movebite conducts user-centered testing to refine its offerings and ensure maximum efficacy. This includes testing initiatives at sports events, where the diverse crowd provides invaluable feedback to fine-tune the app's features and user experience. The testing process encompasses both quantitative and qualitative approaches based on the Health Belief Model. Through digital questionnaires, Movebite aims to gauge users' perceptions of sitting as a health threat and the potential benefits of using the app to alleviate associated risks. Additionally, semi-structured interviews delve deeper into user experiences, providing qualitative insights into the app's usability, look, and feel. By this, Movebite aims to not only understand the factors influencing adoption but also to tailor its interventions effectively. Ultimately, the goal is to create an environment encouraging individuals to embrace physical activity in small, manageable increments, thereby fostering long-term engagement promoting overall well-being.Through continuous innovation and collaboration with research partners, Movebite remains committed to empowering individuals to lead healthier, more active lifestyles, one micro-break at a time.