Dienst van SURF
© 2025 SURF
In service design projects, collaboration between design consultant and service provider can be problematic. The nature of these projects requires a high level of shared understanding and commitment, which providers may not be used to. We studied designer-provider collaboration in multiple real-life cases, in order to uncover determinants for successful collaboration. The case studies involved six service innovation projects, performed by Dutch design agencies. Independent researchers closely monitored the projects. Additional interviews with designers and providers gave insights in how both parties experienced their collaboration in the innovation projects. During data analysis, a coding scheme was created inductively. The scheme supported us in formulating 12 themes for designer-provider collaboration, amongst them four contextual determinants of shared understanding and stakeholder commitment in SD-projects. The insights from this study were then grounded in literature. Knowledge gaps were identified on themes about agreements of responsibilities, the open-endedness of an SD-process, an opportunitysearching approach, and organizational change that is required for the successful implementation of innovative service concepts.
Objective: To construct the underlying value structure of shared decision making (SDM) models. Method: We included previously identified SDM models (n = 40) and 15 additional ones. Using a thematic analysis, we coded the data using Schwartz’s value theory to define values in SDM and to investigate value relations. Results: We identified and defined eight values and developed three themes based on their relations: shared control, a safe and supportive environment, and decisions tailored to patients. We constructed a value structure based on the value relations and themes: the interplay of healthcare professionals’ (HCPs) and patients’ skills [Achievement], support for a patient [Benevolence], and a good relationship between HCP and patient [Security] all facilitate patients’ autonomy [Self-Direction]. These values enable a more balanced relationship between HCP and patient and tailored decision making [Universalism]. Conclusion: SDM can be realized by an interplay of values. The values Benevolence and Security deserve more explicit attention, and may especially increase vulnerable patients’ Self-Direction. Practice implications: This value structure enables a comparison of values underlying SDM with those of specific populations, facilitating the incorporation of patients’ values into treatment decision making. It may also inform the development of SDM measures, interventions, education programs, and HCPs when practicing.
In this paper we explore the influence of the physical and social environment (the design space) son the formation of shared understanding in multidisciplinary design teams. We concentrate on the creative design meeting as a microenvironment for studying processes of design communication. Our applied research context entails the design of mixed physical–digital interactive systems supporting design meetings. Informed by theories of embodiment that have recently gained interest in cognitive science, we focus on the role of interactive “traces,” representational artifacts both created and used by participants as scaffolds for creating shared understanding. Our research through design approach resulted in two prototypes that form two concrete proposals of how the environment may scaffold shared understanding in design meetings. In several user studies we observed users working with our systems in natural contexts. Our analysis reveals how an ensemble of ongoing social as well as physical interactions, scaffolded by the interactive environment, grounds the formation of shared understanding in teams. We discuss implications for designing collaborative tools and for design communication theory in general.
MULTIFILE
DISTENDER will provide integrated strategies by building a methodological framework that guide the integration of climate change(CC) adaptation and mitigation strategies through participatory approaches in ways that respond to the impacts and risks of climatechange (CC), supported by quantitative and qualitative analysis that facilitates the understanding of interactions, synergies and tradeoffs.Holistic approaches to mitigation and adaptation must be tailored to the context-specific situation and this requires a flexibleand participatory planning process to ensure legitimate and salient action, carried out by all important stakeholders. DISTENDER willdevelop a set of multi-driver qualitative and quantitative socio-economic-climate scenarios through a facilitated participatory processthat integrates bottom-up knowledge and locally-relevant drivers with top-down information from the global European SharedSocioeconomic Pathways (SSPs) and downscaled Representative Concentration Pathways (RCPs) from IPCC. A cross-sectorial andmulti-scale impact assessment modelling toolkit will be developed to analyse the complex interactions over multiple sectors,including an economic evaluation framework. The economic impact of the different efforts will be analyse, including damage claimsettlement and how do sectoral activity patterns change under various scenarios considering indirect and cascading effects. It is aninnovative project combining three key concepts: cross-scale, integration/harmonization and robustness checking. DISTENDER willfollow a pragmatic approach applying methodologies and toolkits across a range of European case studies (six core case studies andfive followers) that reflect a cross-section of the challenges posed by CC adaptation and mitigation. The knowledge generated byDISTENDER will be offered by a Decision Support System (DSS) which will include guidelines, manuals, easy-to-use tools andexperiences from the application of the cases studies.
CRISPR/Cas genome engineering unleashed a scientific revolution, but entails socio-ethical dilemmas as genetic changes might affect evolution and objections exist against genetically modified organisms. CRISPR-mediated epigenetic editing offers an alternative to reprogram gene functioning long-term, without changing the genetic sequence. Although preclinical studies indicate effective gene expression modulation, long-term effects are unpredictable. This limited understanding of epigenetics and transcription dynamics hampers straightforward applications and prevents full exploitation of epigenetic editing in biotechnological and health/medical applications.Epi-Guide-Edit will analyse existing and newly-generated screening data to predict long-term responsiveness to epigenetic editing (cancer cells, plant protoplasts). Robust rules to achieve long-term epigenetic reprogramming will be distilled based on i) responsiveness to various epigenetic effector domains targeting selected genes, ii) (epi)genetic/chromatin composition before/after editing, and iii) transcription dynamics. Sustained reprogramming will be examined in complex systems (2/3D fibroblast/immune/cancer co-cultures; tomato plants), providing insights for improving tumor/immune responses, skin care or crop breeding. The iterative optimisations of Epi-Guide-Edit rules to non-genetically reprogram eventually any gene of interest will enable exploitation of gene regulation in diverse biological models addressing major societal challenges.The optimally balanced consortium of (applied) universities, ethical and industrial experts facilitates timely socioeconomic impact. Specifically, the developed knowledge/tools will be shared with a wide-spectrum of students/teachers ensuring training of next-generation professionals. Epi-Guide-Edit will thus result in widely applicable effective epigenetic editing tools, whilst training next-generation scientists, and guiding public acceptance.
The textile industry contributes over 8% of global greenhouse gas emissions and 20% of the world's wastewater, exceeding emissions from international flights and shipping combined. In the European Union, textile purchases in 2020 resulted in about 270 kg of CO₂ emissions per person, yet only 1% of used clothes are recycled into new garments.To address these challenges, the Textile Hub Groningen (THG) aims to assist small and medium-sized enterprises (SMEs) and stakeholders in forming circular textile value chains, hence reducing waste. Designing circular value chains is complex due to conflicting interests, lack of shared understanding, knowledge gaps regarding circular design principles and emerging technologies, and inadequate tools for collaborative business model development. The potential key stakeholders in the circular textile value chain find it hard to use existing tools and methods for designing these value chains as they are often abstract, not designed to be used in a collaborative setting that fosters collective sense making, immersive learning and experimentation. Consequently, the idea of circular textile value chain remains abstract and hard to realize.Serious games have been used in the past to learn about, simulate and experiment with complex adaptive systems. In this project we aim to answer the following research:How can serious games be leveraged to design circular textile value chains in the region?The expected outcomes of this project are: • Serious game: Facilitates the design of circular textile value chains• Academic Publication: Publish findings to contribute to scholarly discourse.• Future Funding Preparation: Mobilize partners and prepare proposals for follow-up funding to expand the approach to other domains.By leveraging game-based collaborative circular value chain and business model design experiences, this project aims to overcome barriers in designing viable circular value chains in the textile industry.