Dienst van SURF
© 2025 SURF
The present study aimed to develop a football-specific self-report instrument measuring self-regulated learning in the context of daily practice, which can be used to monitor the extent to which players take responsibility for their own learning. Development of the instrument involved six steps: 1. Literature review based on Zimmerman's (2006) theory of self-regulated learning, 2. Item generation, 3. Item validation, 4. Pilot studies, 5. Exploratory factor analysis (EFA), and 6. Confirmatory factor analysis (CFA). The instrument was tested for reliability and validity among 204 elite youth football players aged 13-16 years (Mage = 14.6; s = 0.60; 123 boys, 81 girls). The EFA indicated that a five-factor model fitted the observed data best (reflection, evaluation, planning, speaking up, and coaching). However, the CFA showed that a three-factor structure including 22 items produced a satisfactory model fit (reflection, evaluation, and planning; non-normed fit index [NNFI] = 0.96, comparative fit index [CFI] = 0.95, root mean square error of approximation [RMSEA] = 0.067). While the self-regulation processes of reflection, evaluation, and planning are strongly related and fit well into one model, other self-regulated learning processes seem to be more individually determined. In conclusion, the questionnaire developed in this study is considered a reliable and valid instrument to measure self-regulated learning among elite football players.
Digital support during self-regulated learning can improve metacognitive knowledge and skills in learners. Previous research has predominantly focused on embedding metacognitive support in domain-specific content. In this study, we examine a detached approach where digital metacognitive support is offered in parallel to ongoing domain-specific training via a digital tool. The primary support mechanism was self-explication, where learners are prompted to make, otherwise implicit, metacognition concrete.In a controlled pre-test/post-test quasi-experiment, we compared domain-specific and domain-general support and assessed the effects, use, and learners' perceptions of the tool. The results showed that self-explication is an effective mechanism to support and improve metacognition during self-regulated learning. Furthermore, the results confirm the effectiveness of offering detached metacognitive support. While only domain-specific metacognitive support was found to be effective, quantitative and qualitative analysis warrant further research into domain-general and detached metacognitive support.The results also indicated that, while students with higher metacognition found a lack of relevance of using the tool, students with lower metacognition are less likely to make (structural) use of the available support. A key challenge for future research is thus to adapt metacognitive support to learner needs, and to provide metacognitive support to those who would benefit from it the most. The paper concludes by formulating implications for future research as well as design of digital metacognitive support.
Higher education offers great flexibility as students are largely free to decide where, when, and how to study. Being successful in such an environment requires well-developed self-regulated learning skills. However, every teacher in higher education knows that students experience ample difficulty to self-regulate their learning. They struggle to set and plan learning goals, and to gain sufficient depth in learning when preparing for exams. These struggles can negatively impact their learning, well-being, academic achievement, and professional life. On top of the existing flexibility in higher education, a need for more flexibility in what students learn is becoming evident. That is, students have room for flexible learningapproaches (i.e., deciding what learning goals or materials to study and how) and/or flexible learning trajectories (i.e.,choosing what combination of courses to take). This places an additional burden on students’ self-regulated learning skills. We posit that for students to thrive in flexible higher education, practice-oriented research on supporting students’self-regulated learning skills is required. Our collaborative consortium will i) unravel how students can be optimally scaffolded within flexible learning approaches and flexible learning trajectories, ii) examine how to optimize teacher and technological support, and iii) study how student autonomy and motivation can be guarded. We will set up a practice-oriented research program with both qualitative and quantitative methods, including design-based research, action research, pre-post comparative intervention studies, and large-scale correlational research. The findings will impact higher education through (technological) design guidelines and intervention programs for educational professionals, andsupport-modules for students.