Dienst van SURF
© 2025 SURF
This research contributes to understanding and shaping systems for OFMSW separation at urban Small and Medium Enterprises (SMEs, such as offices, shops and service providers). Separating SMEs’ organic fraction of municipal solid waste (OFMSW) is both an opportunity and a serious challenge for the transition towards circular cities. It is an opportunity because OFMSW represents approximately 40% of the total waste mass generated by these companies. It is challenging because post-collection separation is not feasible for OFMSW. Therefore, SMEs disposing of waste should separate their solid waste so that processing the organic fraction for reuse and recycling is practical and attainable. However, these companies do not experience direct advantages from the extra efforts in separating waste, and much of the OFMSW ends up in landfills, often resulting in unnecessary GHG emissions. Therefore, governments and waste processors are looking for ways to improve the OFMSW separation degree by urban companies disposing of waste through policies for behaviour change.There are multiple types of personnel at companies disposing of waste. These co-workers act according to their values, beliefs and norms. They adapt their behaviour continuously, influenced by the physical environment, events over time and self-evaluation of their actions. Therefore, waste separation at companies can be regarded as a Socio-Technical Complex Adaptive System (STCAS). Agent-based modelling and simulation are powerful methods to help understand STCAS. Consequently, we have created an agent-based model representing the evolution of behaviour regarding waste separation at companies in the urban environment. The model aims to show public and private stakeholders involved in solid waste collection, transport and processing to what extent behaviour change policies can shape the system towards desired waste separation degrees.We have co-created the model with participants utilising literature and empirical data from a case study on the transition of the waste collection system of a business park located at a former harbour area in Amsterdam, The Netherlands. First, a conceptual model of the system and the environment was set up through participatory workshops, surveys and interviews with stakeholders, domain experts and relevant actors. Together with our case participants, five policies that affect waste separation behaviour were included in the model. To model the behaviour of each company worker’s values, beliefs and norms during the separation and disposal of OFMSW, we have used the Value-Belief-Norm (VBN) Theory by Stern et al. (1999). We have collected data on waste collection behaviour and separation rates through interviews, workshops and a literature study to operationalise and validate the model.Simulation results show how combinations of behaviour profiles affect waste separation rates. Furthermore, findings show that single waste separation policies are often limitedly capable of changing the behaviour in the system. Rather, a combination of information and communication policies is needed to improve the separation of OFMSW, i.e., dissemination of a newsletter, providing personal feedback to the co-workers disposing of waste, and sharing information on the (improvement of) recycling rates.This study contributes to a better understanding of how policies can support co-workers’ pro-environmental behaviour for organic waste separation rates at SMEs. Thus, it shows policymakers how to stimulate the circular transition by actively engaging co-workers’ waste separation behaviour at SMEs. Future work will extend the model’s purpose by including households and policies supporting separating multiple waste types aimed at various R-strategies proposed by Potting et al. (2016).
MULTIFILE
The selectivity of the separation of some anthocyanins on Diasphere-11-C10CN stationary phase (phase I) is compared with the traditional reversed Symmetry C18 phase (phase II). It is found that, in contrast to phase II, phase I is effective in the separation of isomeric pairs of anthocyanins of 6-hydroxycyanidin-3-rutinoside and delphinidin-3-rutinoside, 6-hydroxypelargonidin-3-rutinoside and cyanidin-3-rutinoside, which ensures the determination of anthocyanins of Alstroemeria flowers. A comparison of separation maps shows that, on phase I, as compared with phase II, retention does not decrease so much, when OH groups are added to the anthocyanidin structure; trend lines for 3-mono-, di-, and triglucosides have a higher slope, and the addition of a glucosidic substituent at position 5 results in a more significant decrease in the retentionof anthocyanins. Different selectivity of the separation of anthocyanins on phase I makes this separation version a good alternative to traditional reversed phase chromatography.
The recycling of post consumer cotton textile waste is highly requested, due to the high environmental impact of cotton production. Often cotton is mixed in blends with polyethylene terephthalate (PET). For the generation of high value products from recycled cotton, it essential that PET is separated from the cotton first. In this contribution, the depolymerization of PET in cotton / PET blend is investigated for the separation of PET from cotton fibers. Ionic liquids and NaOH are used as catalysts for the depolymerization reaction in ethylene glycol (glycolysis). It will be shown that ionic liquids have no significant influence on the conversion of PET. However, 99% conversion is achieved in this process with 2 w/w % NaOH as catalyst. This enables the selective depolymerization of PET in presence of cotton and gives rise to an easy separation of cotton from cotton / PET blends.Paper for the 14th World Textile Conference, May 26th-28th2014, Bursa, Turkey.
MULTIFILE
In dit project wordt de haalbaarheid bestudeerd voor het maken van nanoporeuze membranen met behulp van gangbare processen in de halfgeleiderindustrie. Nanoporeuze membranen bieden onder meer de mogelijkheid om op energie-efficiënte en milieuvriendelijke manier water te ontzouten of het scheiden van vluchtige componenten als alternatief voor destillatie. Recent zijn veel nieuwe nanoporeuze materialen gerapporteerd. Succesvolle toepassingen op het gebied van katalyse, sensoren en scheidingen, waaronder ook eerste voorbeelden van kleinschalige nanofiltratie, geven de potentie van dergelijke materialen aan voor een toepassing op het gebied van nanofiltratie op grotere schaal. Echter, het ontbreekt momenteel aan goede, eenvoudige methoden om deze opschaling voor ultradunne (sub-micron), nanoporeuze membranen te realiseren. In dit project zal wordt een methode bestudeerd en geïmplementeerd waarmee dit wel mogelijk is.