Dienst van SURF
© 2025 SURF
Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates whether and how out-of-school science activities contribute to the elicitation, emergence, and development of pupils’ science talent. The context of this thesis is the Northern Netherlands Science Network, an alliance of primary schools, out-of-school science facilities, the university of Groningen, and the Hanze University of Applied Sciences (www.wknn.nl). Interviews with the schools on their starting position showed that adequate communication between schools and out-of-school facilities is necessary to coordinate the participants’ educational goals. Secondly, the elicitation and expression of science talent was studied in the micro-interactions between pupils and their educator (classroom teacher or facility instructor). To do so, a multivariate coding scheme was developed to measure Pedagogical Content Knowledge expressed in real-time interaction (EPCK). The interaction shows a variable pattern over time. Sometimes episodes of high-level EPCK — so-called talent moments — emerge, in which talented pupil behavior in the form of pupils’ conceptual understanding, and talent elicitation by the educator in the form of open teaching focused on conceptual understanding, determine one another. These talent moments only occur in activities that were prepared in the classroom and with educators who were trained to evoke conceptual understanding. Under these conditions, out of school science activities can contribute to the elicitation and development of science talent in primary school pupils.AB - Out-of-school science educational activities, such as school visits to a science center, aim at stimulating pupils’ science talent. Science talent is a developmental potential that takes the form of talented behaviors such as curiosity and conceptual understanding. This dissertation investigates whether and how out-of-school science activities contribute to the elicitation, emergence, and development of pupils’ science talent. The context of this thesis is the Northern Netherlands Science Network, an alliance of primary schools, out-of-school science facilities, the university of Groningen, and the Hanze University of Applied Sciences (www.wknn.nl). Interviews with the schools on their starting position showed that adequate communication between schools and out-of-school facilities is necessary to coordinate the participants’ educational goals. Secondly, the elicitation and expression of science talent was studied in the micro-interactions between pupils and their educator (classroom teacher or facility instructor). To do so, a multivariate coding scheme was developed to measure Pedagogical Content Knowledge expressed in real-time interaction (EPCK). The interaction shows a variable pattern over time. Sometimes episodes of high-level EPCK — so-called talent moments — emerge, in which talented pupil behavior in the form of pupils’ conceptual understanding, and talent elicitation by the educator in the form of open teaching focused on conceptual understanding, determine one another. These talent moments only occur in activities that were prepared in the classroom and with educators who were trained to evoke conceptual understanding. Under these conditions, out of school science activities can contribute to the elicitation and development of science talent in primary school pupils.
LINK
Over the past few years, there has been an explosion of data science as a profession and an academic field. The increasing impact and societal relevance of data science is accompanied by important questions that reflect this development: how can data science become more responsible and accountable while also responding to key challenges such as bias, fairness, and transparency in a rigorous and systematic manner? This Patterns special collection has brought together research and perspective from academia, the public and the private sector, showcasing original research articles and perspectives pertaining to responsible and accountable data science.
MULTIFILE
Abstract Despite the numerous business benefits of data science, the number of data science models in production is limited. Data science model deployment presents many challenges and many organisations have little model deployment knowledge. This research studied five model deployments in a Dutch government organisation. The study revealed that as a result of model deployment a data science subprocess is added into the target business process, the model itself can be adapted, model maintenance is incorporated in the model development process and a feedback loop is established between the target business process and the model development process. These model deployment effects and the related deployment challenges are different in strategic and operational target business processes. Based on these findings, guidelines are formulated which can form a basis for future principles how to successfully deploy data science models. Organisations can use these guidelines as suggestions to solve their own model deployment challenges.
MUSE supports the CIVITAS Community to increase its impact on urban mobility policy making and advance it to a higher level of knowledge, exchange, and sustainability.As the current Coordination and Support Action for the CIVITAS Initiative, MUSE primarily engages in support activities to boost the impact of CIVITAS Community activities on sustainable urban mobility policy. Its main objectives are to:- Act as a destination for knowledge developed by the CIVITAS Community over the past twenty years.- Expand and strengthen relationships between cities and stakeholders at all levels.- Support the enrichment of the wider urban mobility community by providing learning opportunities.Through these goals, the CIVITAS Initiative strives to support the mobility and transport goals of the European Commission, and in turn those in the European Green Deal.Breda University of Applied Sciences is the task leader of Task 7.3: Exploitation of the Mobility Educational Network and Task 7.4: Mobility Powered by Youth Facilitation.
Patiëntdata uit vragenlijsten, fysieke testen en ‘wearables’ hebben veel potentie om fysiotherapie-behandelingen te personaliseren (zogeheten ‘datagedragen’ zorg) en gedeelde besluitvorming tussen fysiotherapeut en patiënt te faciliteren. Hiermee kan fysiotherapie mogelijk doelmatiger en effectiever worden. Veel fysiotherapeuten en hun patiënten zien echter nauwelijks meerwaarde in het verzamelen van patiëntdata, maar vooral toegenomen administratieve last. In de bestaande landelijke databases krijgen fysiotherapeuten en hun patiënten de door hen zelf verzamelde patiëntdata via een online dashboard weliswaar teruggekoppeld, maar op een weinig betekenisvolle manier doordat het dashboard primair gericht is op wensen van externe partijen (zoals zorgverzekeraars). Door gebruik te maken van technologische innovaties zoals gepersonaliseerde datavisualisaties op basis van geavanceerde data science analyses kunnen patiëntdata betekenisvoller teruggekoppeld en ingezet worden. Wij zetten technologie dus in om ‘datagedragen’, gepersonaliseerde zorg, in dit geval binnen de fysiotherapie, een stap dichterbij te brengen. De kennis opgedaan in de project is tevens relevant voor andere zorgberoepen. In dit KIEM-project worden eerst wensen van eindgebruikers, bestaande succesvolle datavisualisaties en de hiervoor vereiste data science analyses geïnventariseerd (werkpakket 1: inventarisatie). Op basis hiervan worden meerdere prototypes van inzichtelijke datavisualisaties ontwikkeld (bijvoorbeeld visualisatie van patiëntscores in vergelijking met (beoogde) normscores, of van voorspelling van verwacht herstel op basis van data van vergelijkbare eerdere patiënten). Middels focusgroepinterviews met fysiotherapeuten en patiënten worden hieruit de meest kansrijke (maximaal 5) prototypes geselecteerd. Voor deze geselecteerde prototypes worden vervolgens de vereiste data-analyses ontwikkeld die de datavisualisaties op de dashboards van de landelijke databases mogelijk maken (werkpakket 2: prototypes en data-analyses). In kleine pilots worden deze datavisualisaties door eindgebruikers toegepast in de praktijk om te bepalen of ze daadwerkelijk aan hun wensen voldoen (werkpakket 3: pilots). Uit dit 1-jarige project kan een groot vervolgonderzoek ‘ontkiemen’ naar het effect van betekenisvolle datavisualisaties op de uitkomsten van zorg.
De 2SHIFT SPRONG-groep is een samenwerkingsverband van HAN University of Applied Sciences en Fontys Hogescholen. Onze ambitie is het vergroten van eerlijke kansen op gezond leven. Dit doen we door het vormgeven en versterken van gemeenschappen als fundament voor het creëren van eerlijke kansen op gezond leven. Vanuit deze gemeenschappen wordt in co-creatie gewerkt aan structuur (i.e. systeem), sociale en technologische innovaties. Deze ambitie sluit aan bij de centrale missie KIA Gezondheid en Zorg om bij te dragen aan goede gezondheid en het verkleinen van sociaaleconomische gezondheidsverschillen. Ook draagt het bij aan deelmissie 1. het voorkomen van ziekte, waarbij wij uitgaan van het concept Positieve Gezondheid en Leefomgeving. Én het zorgt voor het verplaatsen van ondersteuning en zorg naar de leefomgeving (deelmissie 2), doordat gemeenschappen hiervoor een stevig fundament vormen. De gemeenschap is geoperationaliseerd als een samenwerking tussen inwonersinitiatieven (i.e. informele actoren) én professionals vanuit wonen, welzijn, zorg en gemeenten (i.e. formele actoren) die bestuurlijk en beleidsmatig worden ondersteund. Toenemend wordt een belangrijke rol en meer verantwoordelijkheid toebedeeld aan inwoners en wordt de noodzaak van sectoroverstijgende, inclusieve samenwerking tussen deze actoren in lokale fieldlabs benadrukt. 2SHIFT start daarom in vier fieldlabs: twee dorpen en twee wijken in (midden-)stedelijke gebieden, waar in vergelijking met groot-stedelijk gebied (zoals Amsterdam, Rotterdam, Den Haag en Utrecht) andere dynamieken en mechanismen een rol spelen bij het creëren van eerlijke kansen op een gezond leven. Om impact in onderwijs en praktijk te realiseren werken we nauw samen met studenten, docenten én met inwoners, professionals, bestuurders en beleidsmakers uit wonen, welzijn, zorg en gemeenten én landelijke kennispartners (“quadruple helix”). 2SHIFT brengt transdisciplinaire expertise én verschillende onderzoeksparadigma’s samen in een Learning Community (LC), waarin bestaande kennis en nieuwe kennis wordt samengebracht en ontwikkeld. Over 8 jaar is 2SHIFT een (inter)nationaal erkende onderzoeksgroep die het verschil maakt.