Dienst van SURF
© 2025 SURF
A literature review conducted as part of a research project named “Measuring Safety in Aviation – Developing Metrics for Safety Management Systems” revealed several challenges regarding the safety metrics used in aviation. One of the conclusions was that there is limited empirical evidence about the relationship between Safety Management System (SMS) processes and safety outcomes. In order to explore such a relationship, respective data from 7 European airlines was analyzed to explore whether there is a monotonic relation between safety outcome metrics and SMS processes, operational activity and demographic data widely used by the industry. Few, diverse, and occasionally contradictory associations were found, indicating that (1) there is a limited value of linear thinking followed by the industry, i.e., “the more you do with an SMS the higher the safety performance”, (2) the diversity in SMS implementation across companies renders the sole use of output metrics not sufficient for assessing the impact of SMS processes on safety levels, and (3) only flight hours seem as a valid denominator in safety performance indicators. At the next phase of the research project, we are going to explore what alternative metrics can reflect SMS/safety processes and safety performance in a more valid manner
Modern safety thinking and models focus more on systemic factors rather than simple cause-effect attributions of unfavourable events on the behaviour of individual system actors. This study concludes previous research during which we had traced practices of new safety thinking practices (NSTPs) in aviation investigation reports by using an analysis framework that includes nine relevant approaches and three safety model types mentioned in the literature. In this paper, we present the application of the framework to 277 aviation reports which were published between 1999 and 2016 and were randomly selected from the online repositories of five aviation authorities. The results suggested that all NSTPs were traceable across the sample, thus followed by investigators, but at different extents. We also observed a very low degree of using systemic accident models. Statistical tests revealed differences amongst the five investigation authorities in half of the analysis framework items and no significant variation of frequencies over time apart from the Safety-II aspect. Although the findings of this study cannot be generalised due to the non-representative sample used, it can be assumed that the so-called new safety thinking has been already attempted since decades and that recent efforts to communicate and foster the corresponding aspects through research and educational means have not yet yielded the expected impact. The framework used in this study can be applied to any industry sector by using larger samples as a means to investigate attitudes of investigators towards safety thinking practices and respective reasons regardless of any labelling of the former as “old” and “new”. Although NSTPs are in the direction of enabling fairer and more in-depth analyses, when considering the inevitable constraints of investigations, it is more important to understand the perceived strengths and weaknesses of each approach from the viewpoint of practitioners rather than demonstrating a judgmental approach in favour or not of any investigation practice.
In this document, we provide the methodological background for the Safety atWork project. This document combines several project deliverables as defined inthe overall project plan: validation techniques and methods (D5.1.1), performanceindicators for safety at work (D5.1.2), personal protection equipment methods(D2.1.2), situational awareness methods (D3.1.2), and persuasive technology methods(D4.1.2).
MULTIFILE