Dienst van SURF
© 2025 SURF
Literature and industry standards do not mention inclusive guidelines to generate safety recommendations. Following a literature review, we suggest nine design criteria as well as the classification of safety recommendations according to their scope (i.e. organisational context, stakeholders addressed and degree of change) and their focus, the latter corresponding to the type of risk barrier introduced. The design and classification criteria were applied to 625 recommendations published by four aviation investigation agencies. The analysis results suggested sufficient implementation of most of the design criteria. Concerning their scope, the findings showed an emphasis on processes and structures (i.e. lower organisational contexts), adaptations that correspond to medium degree of changes, and local stakeholders. Regarding the focus of the recommendations, non-technical barriers that rely mostly on employees’ interpretation were introduced by the vast majority of safety recommendations. Also, statistically significant differences were detected across investigation authorities and time periods. This study demonstrated how the application of the suggested design and classification frameworks could reveal valuable information about the quality, scope and focus of recommendations. Especially the design criteria could function as a starting point towards the introduction of a common standard to be used at local, national and international levels.
Taking into account the lack of uniform guidelines for the design and classification of safety recommendations, a relevant framework was developed according to academic and professional literature. The framework includes nine design criteria for recommendations, it incorporates classifications of their scope and expected effectiveness, and it was used to perform a questionnaire survey across aviation professionals involved in the generation of safety recommendations. The goal of the survey was to capture (1) whether practitioners are knowledgeable about the design criteria, (2) the degree to which they apply those criteria along with corresponding reasons, (3) perceptions of the expected effectiveness of types of controls introduced through recommendations, (4) the frequency of generating each control type and respective explanations, and (5) the extent to which practitioners focus on each of the categories of recommendations’ scope and the relevant reasons. Overall, the results showed: an adequate level of knowledge of the design criteria; a strong positive association of the knowledge on a particular criterion with the degree of its implementation; a variety of frequencies the recommendations are addressed to each of the scope areas; a reverse order of perception of the expected effectiveness of control types compared to the literature suggestions. A thematic analysis revealed a broad spectrum of reasons about the degree to which the design criteria are applied, and the extent to which the various types of recommendations are generated. The results of the survey can be exploited by the aviation sector to steer its relevant education and training efforts and assess the need for influencing the direction safety recommendations are addressed. Similar research is suggested to be conducted by organizations and regional and international agencies of any industry sector by ensuring a larger sample.
MULTIFILE
This paper presents an alternative way to use records from safety investigations as a means to support the evaluation of safety management (SM) aspects. Datasets from safety investigation reports and progress records of an aviation organization were analyzed with the scope of assessing safety management’s role, speed of safety communication, timeliness of safety investigation processes and realization of safety recommendations, and the extent of convergence among SM and investigation teams. The results suggested an interfering role of the safety department, severe delays in safety investigations, timely implementation of recommendations, quick dissemination of investigation reports to the end-users, and a low ratio of investigation team recommendations included in the final safety investigation reports. The results were attributed to non-scalable safety investigation procedures, ineffective resource management, lack of consistent bidirectional communication, lack of investigators’ awareness about the overall organizational context, and a weak commitment of other departments to the realization of safety recommendations. The set of metrics and the combination of quantitative and qualitative methods presented in this paper can support organizations to the transition towards a performance-based evaluation of safety management.
The research proposal aims to improve the design and verification process for coastal protection works. With global sea levels rising, the Netherlands, in particular, faces the challenge of protecting its coastline from potential flooding. Four strategies for coastal protection are recognized: protection-closed (dikes, dams, dunes), protection-open (storm surge barriers), advancing the coastline (beach suppletion, reclamation), and accommodation through "living with water" concepts. The construction process of coastal protection works involves collaboration between the client and contractors. Different roles, such as project management, project control, stakeholder management, technical management, and contract management, work together to ensure the project's success. The design and verification process is crucial in coastal protection projects. The contract may include functional requirements or detailed design specifications. Design drawings with tolerances are created before construction begins. During construction and final verification, the design is measured using survey data. The accuracy of the measurement techniques used can impact the construction process and may lead to contractual issues if not properly planned. The problem addressed in the research proposal is the lack of a comprehensive and consistent process for defining and verifying design specifications in coastal protection projects. Existing documents focus on specific aspects of the process but do not provide a holistic approach. The research aims to improve the definition and verification of design specifications through a systematic review of contractual parameters and survey methods. It seeks to reduce potential claims, improve safety, enhance the competitiveness of maritime construction companies, and decrease time spent on contractual discussions. The research will have several outcomes, including a body of knowledge describing existing and best practices, a set of best practices and recommendations for verifying specific design parameters, and supporting documents such as algorithms for verification.