Dienst van SURF
© 2025 SURF
Physical inactivity has become a major public health concern and, consequently, the awareness of striving for a healthy lifestyle has increased. As a result, the popularity of recreational sports, such as running, has increased. Running is known for its low threshold to start and its attractiveness for a heterogeneous group of people. Yet, one can still observe high drop-out rates among (novice) runners. To understand the reasons for drop-out as perceived by runners, we investigate potential reasons to quit running among short distance runners (5 km and 10 km) (n = 898). Data used in this study were drawn from the standardized online Eindhoven Running Survey 2016 (ERS16). Binary logistic regressions were used to investigate the relation between reasons to quit running and different variables like socio-demographic variables, running habits and attitudes, interests, and opinions (AIOs) on running. Our results indicate that, not only people of different gender and age show significant differences in perceived reasons to quit running, also running habits, (e.g., running context and frequency) and AIOs are related to perceived reasons to quit running too. With insights into these related variables, potential drop-out reasons could help health professionals in understanding and lowering drop-out rates among recreational runners
This study aims to help professionals in the field of running and running-related technology (i.e., sports watches and smartphone applications) to address the needs of runners. It investigates the various runner types—in terms of their attitudes, interests, and opinions (AIOs) with regard to running—and studies how they differ in the technology they use. Data used in this study were drawn from the standardized online Eindhoven Running Survey 2016 (ERS2016). In total, 3723 participants completed the questionnaire. Principal component analysis and cluster analysis were used to identify the different running types, and crosstabs obtained insights into the use of technology between different typologies. Based on the AIOs, four distinct runner types were identified: casual individual, social competitive, individual competitive, and devoted runners. Subsequently, we related the types to their use of sports watches and apps. Our results show a difference in the kinds of technology used by different runner types. Differentiation between types of runners can be useful for health professionals, policymakers involved in public health, engineers, and trainers or coaches to adapt their services to specific segments, in order to make use of the full potential of running-related systems to support runners to stay active and injury-free and contribute to a healthy lifestyle.
Injuries and lack of motivation are common reasons for discontinuation of running. Real-time feedback from wearables can reduce discontinuation by reducing injury risk and improving performance and motivation. There are however several limitations and challenges with current real-time feedback approaches. We discuss these limitations and challenges and provide a framework to optimise real-time feedback for reducing injury risk and improving performance and motivation. We first discuss the reasons why individuals run and propose that feedback targeted to these reasons can improve motivation and compliance. Secondly, we review the association of running technique and running workload with injuries and performance and we elaborate how real-time feedback on running technique and workload can be applied to reduce injury risk and improve performance and motivation. We also review different feedback modalities and motor learning feedback strategies and their application to real-time feedback. Briefly, the most effective feedback modality and frequency differ between variables and individuals, but a combination of modalities and mixture of real-time and delayed feedback is most effective. Moreover, feedback promoting perceived competence, autonomy and an external focus can improve motivation, learning and performance. Although the focus is on wearables, the challenges and practical applications are also relevant for laboratory-based gait retraining.