Dienst van SURF
© 2025 SURF
Physical inactivity has become a major public health concern and, consequently, the awareness of striving for a healthy lifestyle has increased. As a result, the popularity of recreational sports, such as running, has increased. Running is known for its low threshold to start and its attractiveness for a heterogeneous group of people. Yet, one can still observe high drop-out rates among (novice) runners. To understand the reasons for drop-out as perceived by runners, we investigate potential reasons to quit running among short distance runners (5 km and 10 km) (n = 898). Data used in this study were drawn from the standardized online Eindhoven Running Survey 2016 (ERS16). Binary logistic regressions were used to investigate the relation between reasons to quit running and different variables like socio-demographic variables, running habits and attitudes, interests, and opinions (AIOs) on running. Our results indicate that, not only people of different gender and age show significant differences in perceived reasons to quit running, also running habits, (e.g., running context and frequency) and AIOs are related to perceived reasons to quit running too. With insights into these related variables, potential drop-out reasons could help health professionals in understanding and lowering drop-out rates among recreational runners
Individual and unorganized sports with a health-related focus, such as recreational running, have grown extensively in the last decade. Consistent with this development, there has been an exponential increase in the availability and use of electronic monitoring devices such as smartphone applications (apps) and sports watches. These electronic devices could provide support and monitoring for unorganized runners, who have no access to professional trainers and coaches. The purpose of this paper is to gain insight into the characteristics of event runners who use running-related apps and sports watches. This knowledge is useful from research, design, and marketing perspectives to adequately address unorganized runners’ needs, and to support them in healthy and sustainable running through personalized technology. Data used in this study are drawn from the standardized online Eindhoven Running Survey 2014 (ERS14). In total, 2,172 participants in the Half Marathon Eindhoven 2014 completed the questionnaire (a response rate of 40.0%). Binary logistic regressions were used to analyze the impact of socio-demographic variables, running-related variables, and psychographic characteristics on the use of running-related apps and sports watches. Next, consumer profiles were identified. The results indicate that the use of monitoring devices is affected by socio-demographics as well as sports-related and psychographic variables, and this relationship depends on the type of monitoring device. Therefore, distinctive consumer profiles have been developed to provide a tool for designers and manufacturers of electronic running-related devices to better target (unorganized) runners’ needs through personalized and differentiated approaches. Apps are more likely to be used by younger, less experienced and involved runners. Hence, apps have the potential to target this group of novice, less trained, and unorganized runners. In contrast, sports watches are more likely to be used by a different group of runners, older and more experienced runners with higher involvement. Although apps and sports watches may potentially promote and stimulate sports participation, these electronic devices do require a more differentiated approach to target specific needs of runners. Considerable efforts in terms of personalization and tailoring have to be made to develop the full potential of these electronic devices as drivers for healthy and sustainable sports participation.
Within this study the aim is to measure running workload and relevant running technique key points on varying cadence in recreational runners using a custom build sensor system ‘Nodes’. Seven participants ran on a treadmill at a self-chosen comfortable speed. Cadence was randomly guided by a metronome using 92%, 96%, 100%, 104%, and 108% of the preferred cadence in 2-min trials. Workload was measured by collecting the heart rate and the rating of perceived exertion (RPE 1 to 10) scores. Heart rate data shows that the 100% cadence trial was most economical with a relative heart rate of 99.2%. The 108% cadence trial had the lowest relative RPE score with 96.2%. The sample rate of the Nodes system during this experiment was too low to analyze the key points. Three requirements are proposed for the further engineering of a wearable running system, (i) sampling frequency of minimal 50 Hz, (ii) step-by-step analysis, and (iii) collecting workload in the heart rate and RPE.