Dienst van SURF
© 2025 SURF
The Design-to-Robotic-Production and -Assembly (D2RP&A) process developed at Delft University of Technology (DUT) has been scaled up to building size by prototyping of-site a 3.30 m high fragment of a larger spaceframe structure The fragment consists of wooden linear elements connected to a polymer node printed at 3D Robot Printing and panels robotically milled at Amsterdam University of Applied Science (AUAS). It has been evaluated for suitability for assembly on-site without temporary support while relying on human-robot collaboration. The constructed architectural hybrid structure is proof of concept for an on- and off-site D2RP&A approach that is envisioned to be implemented using a range of robots able to possibly address all phases of construction in the future.
Within our research on robotic gas detection, we have focused on making a prototype based on Boston Dynamics SPOT, because it takes a lot of difficulties out of prototyping. For instance, it has its own obstacle avoidance algorithm, good drivers are available for ROS2, and SPOT is meant for outdoor navigation. Being a legged robot means that it can easily traverse curbs, shrubberies, unstable soil and even stairs. For this document, we are going to use the insights that we used when looking for a solution for SPOT.
MULTIFILE
Growing volumes of wood are being used in construction, interior architecture, and product design, resulting in increasing amounts of wood waste. Using this waste is challenging, because it is too labor-intensive to process large volumes of uneven wood pieces that vary in geometry, quality, and origin. The project “Circular Wood for the Neighborhood” researches how advanced computational design and robotic production approaches can be used to create meaningful applications from waste wood. shifting the perception of circular wood as a simply harvested stream, towards a material with unique aesthetics of its own right. The complexity of the material is suggested to be tackled by switching from the object-oriented design towards designing soft systems. The system developed uses a bottom-up approach where each piece of wood aggregates according to certain parameters and the designed medium is mainly rule-sets and connections. The system is able to produce many options and bring the end-user for a meaningful co-design instead of choosing from the pre-designed options. Material-driven design algorithms were developed, which can be used by designers and end-users to design bespoke products from waste wood. In the first of three case studies, a small furniture item (“coffee table”) was designed from an old door, harvested from a renovation project. For its production, two principle approaches were developed: with or without preprocessing the wood. The principles were tested with an industrial robotic arm and available waste wood. A first prototype was made using the generated aggregation from the system, parametric production processes and robotic fabrication.
Flying insects like dragonflies, flies, bumblebees are able to couple hovering ability with the ability for a quick transition to forward flight. Therefore, they inspire us to investigate the application of swarms of flapping-wing mini-drones in horticulture. The production and trading of agricultural/horticultural goods account for the 9% of the Dutch gross domestic product. A significant part of the horticultural products are grown in greenhouses whose extension is becoming larger year by year. Swarms of bio-inspired mini-drones can be used in applications such as monitoring and control: the analysis of the data collected enables the greenhouse growers to achieve the optimal conditions for the plants health and thus a high productivity. Moreover, the bio-inspired mini-drones can detect eventual pest onset at plant level that leads to a strong reduction of chemicals utilization and an improvement of the food quality. The realization of these mini-drones is a multidisciplinary challenge as it requires a cross-domain collaboration between biologists, entomologists and engineers with expertise in robotics, mechanics, aerodynamics, electronics, etc. Moreover a co-creation based collaboration will be established with all the stakeholders involved. With this approach we can integrate technical and social-economic aspects and facilitate the adoption of this new technology that will make the Dutch horticulture industry more resilient and sustainable.
Agricultural/horticultural products account for 9% of Dutch gross domestic product. Yearly expansion of production involves major challenges concerning labour costs and plant health control. For growers, one of the most urgent problems is pest detection, as pests cause up to 10% harvest loss, while the use of chemicals is increasingly prohibited. For consumers, food safety is increasingly important. A potential solution for both challenges is frequent and automated pest monitoring. Although technological developments such as propeller-based drones and robotic arms are in full swing, these are not suitable for vertical horticulture (e.g. tomatoes, cucumbers). A better solution for less labour intensive pest detection in vertical crop horticulture, is a bio-inspired FW-MAV: Flapping Wings Micro Aerial Vehicle. Within this project we will develop tiny FW-MAVs inspired by insect agility, with high manoeuvrability for close plant inspection, even through leaves without damage. This project focusses on technical design, testing and prototyping of FW-MAV and on autonomous flight through vertically growing crops in greenhouses. The three biggest technical challenges for FW-MAV development are: 1) size, lower flight speed and hovering; 2) Flight time; and 3) Energy efficiency. The greenhouse environment and pest detection functionality pose additional challenges such as autonomous flight, high manoeuvrability, vertical take-off/landing, payload of sensors and other equipment. All of this is a multidisciplinary challenge requiring cross-domain collaboration between several partners, such as growers, biologists, entomologists and engineers with expertise in robotics, mechanics, aerodynamics, electronics, etc. In this project a co-creation based collaboration is established with all stakeholders involved, integrating technical and biological aspects.