Dienst van SURF
© 2025 SURF
This Work-in-Progress Innovate Practice Short Paper is concentrated around online teaching and learning and especially focused on the didactics in remote labs. In a remote lab, the lab equipment or instruments are geographically atanother place than the student (and/or lecturer) himself. Learning will take place through the internet. Insights from online teaching and learning help to define what is needed in the special case of teaching and learning in remote labs. Feedback and interaction remain key factors for effective learning. Typesof interaction in remote labs are: student-lecturer-, studentstudent-, student-content-, and student-interface interaction. These forms of interaction should be worked out when setting up a remote lab environment for students, taking onlineengagement into account. The purpose is to come with an overview of didactical methods for teaching- and learning in remote labs.
Described are the results of an investigation in the appreciation of distance learning, limited to a case study with an online lab-experiment. Together with other educational institutes and companies Fontys University of Applied Sciences participated in a number of projects in which distance learning courses were developed. Some courses have been integrated in the regular curriculum. Our study was set up to get insight into the appreciation of students for this way of learning, especially concerning online lab-experiments. By using surveys and interviews after the students accomplished either a regular course or a distance learning course on the same object we tried to get a better understanding of how students used the course and appreciated it. Also we wanted to know whether an online lab-experiment is more or less effective than a regular one. Preliminary data analyses have shown that the appreciation of an online lab-experiment is dependent on a number of items, like the educational contents of the experiment itself, the way accompanying theory is presented, possibilities of doing the experiment in an alternative way, the organization around the experiment etc. It appears also that students give serious suggestions on developing other online lab-experiments.
Covid-19 made us realize that educational practices in higher education must change AND can change. A possible solution for practicing lab work is working in a remote lab: a real lab in which students and the equipment/instruments are physically apart. The concept of printed touchless electronics was taken as the leading principle for students in the Department of Electrical Engineering of a university of applied sciences. They got the assignment to write a programming code, with which they could control a robot. This robot was supposed to draw, with conductive ink, a pattern, that could function as a printed (light) sensor. The robot was situated in the lab, the students uploaded their code from home. Via a live stream, the students could follow the movements of the robot and the pen. From a didactical perspective, the goal was to find out if the selected didactical methods: teamwork and feedback via an internet platform and working with consultation hours, had the estimated effect. An interdisciplinary team of three lecturers was composed to guide the students. Students thought that the consultation hours were very helpful. The online teamwork between the students did not work so well. In the future, students would like to have more opportunities for testing and working with the remote lab.
Electrohydrodynamic Atomization (EHDA), also known as Electrospray (ES), is a technology which uses strong electric fields to manipulate liquid atomization. Among many other areas, electrospray is currently used as an important tool for biomedical applications (droplet encapsulation), water technology (thermal desalination and metal recovery) and material sciences (nanofibers and nano spheres fabrication, metal recovery, selective membranes and batteries). A complete review about the particularities of this technology and its applications was recently published in a special edition of the Journal of Aerosol Sciences [1]. Even though EHDA is already applied in many different industrial processes, there are not many controlling tools commercially available which can be used to remotely operate the system as well as identify some spray characteristics, e.g. droplet size, operational mode, droplet production ratio. The AECTion project proposes the development of an innovative controlling system based on the electrospray current, signal processing & control and artificial intelligence to build a non-visual tool to control and characterize EHDA processes.
Society continues to place an exaggerated emphasis on women's skins, judging the value of lives lived within, by the colour and condition of these surfaces. This artistic research will explore how the skin of a painting might unpack this site of judgement, highlight its objectification, and offer women alternative visualizations of their own sense of embodiment. This speculative renovation of traditional concepts of portrayal will explore how painting, as an aesthetic body whose material skin is both its surface and its inner content (its representations) can help us imagine our portrayal in a different way, focusing, not on what we look like to others, but on how we sense, touch, and experience. How might we visualise skin from its ghostly inner side? This feminist enquiry will unfold alongside archival research on The Ten Largest (1906-07), a painting series by Swedish Modernist Hilma af Klint. Initial findings suggest the artist was mapping traditional clothing designs into a spectral, painterly idea of a body in time. Fundamental methods research, and access to newly available Af Klint archives, will expand upon these roots in maps and women’s craft practices and explore them as political acts, linked to Swedish Life Reform, and knowingly sidestepping a non-inclusive art history. Blending archival study with a contemporary practice informed by eco-feminism is an approach to artistic research that re-vivifies an historical paradigm that seems remote today, but which may offer a new understanding of the past that allows us to also re-think our present. This mutuality, and Af Klint’s rhizomatic approach to image-making, will therefore also inform the pedagogical development of a Methods Research programme, as part of this post-doc. This will extend across MA and PhD study, and be further enriched by pedagogy research at Cal-Arts, Los Angeles, and Konstfack, Stockholm.
The integration of renewable energy resources, controllable devices and energy storage into electricity distribution grids requires Decentralized Energy Management to ensure a stable distribution process. This demands the full integration of information and communication technology into the control of distribution grids. Supervisory Control and Data Acquisition (SCADA) is used to communicate measurements and commands between individual components and the control server. In the future this control is especially needed at medium voltage and probably also at the low voltage. This leads to an increased connectivity and thereby makes the system more vulnerable to cyber-attacks. According to the research agenda NCSRA III, the energy domain is becoming a prime target for cyber-attacks, e.g., abusing control protocol vulnerabilities. Detection of such attacks in SCADA networks is challenging when only relying on existing network Intrusion Detection Systems (IDSs). Although these systems were designed specifically for SCADA, they do not necessarily detect malicious control commands sent in legitimate format. However, analyzing each command in the context of the physical system has the potential to reveal certain inconsistencies. We propose to use dedicated intrusion detection mechanisms, which are fundamentally different from existing techniques used in the Internet. Up to now distribution grids are monitored and controlled centrally, whereby measurements are taken at field stations and send to the control room, which then issues commands back to actuators. In future smart grids, communication with and remote control of field stations is required. Attackers, who gain access to the corresponding communication links to substations can intercept and even exchange commands, which would not be detected by central security mechanisms. We argue that centralized SCADA systems should be enhanced by a distributed intrusion-detection approach to meet the new security challenges. Recently, as a first step a process-aware monitoring approach has been proposed as an additional layer that can be applied directly at Remote Terminal Units (RTUs). However, this allows purely local consistency checks. Instead, we propose a distributed and integrated approach for process-aware monitoring, which includes knowledge about the grid topology and measurements from neighboring RTUs to detect malicious incoming commands. The proposed approach requires a near real-time model of the relevant physical process, direct and secure communication between adjacent RTUs, and synchronized sensor measurements in trustable real-time, labeled with accurate global time-stamps. We investigate, to which extend the grid topology can be integrated into the IDS, while maintaining near real-time performance. Based on topology information and efficient solving of power flow equation we aim to detect e.g. non-consistent voltage drops or the occurrence of over/under-voltage and -current. By this, centrally requested switching commands and transformer tap change commands can be checked on consistency and safety based on the current state of the physical system. The developed concepts are not only relevant to increase the security of the distribution grids but are also crucial to deal with future developments like e.g. the safe integration of microgrids in the distribution networks or the operation of decentralized heat or biogas networks.