Dienst van SURF
© 2025 SURF
In this paper, the performance gain obtained by combining parallel peri- odic real-time processes is elaborated. In certain single-core mono-processor configurations, for example, embedded control systems in robotics comprising many short processes, process context switches may consume a considerable amount of the available processing power. For this reason, it can be advantageous to combine processes, to reduce the number of context switches and thereby increase the performance of the application. As we consider robotic applications only, often consisting of processes with identical periods, release times and deadlines, we restrict these configurations to periodic real-time processes executing on a single-core mono-processor. By graph-theoretical concepts and means, we provide necessary and sufficient conditions so that the number of context switches can be reduced by combining synchronising processes.
In bepaalde single-core configuraties met één processor, b.v. embedded control systems zoals robotic applications die uit vele korte processen bestaan, kunnen de context switches van een proces een aanzienlijke hoeveelheid van de beschikbare processing power verbruiken. Het verminderen van het aantal context switches vermindert de executietijd en verhoogt daardoor de prestaties van de toepassing. Bovendien is de end-to-end executietijd van de processen langer dan strict noodzakelijk, b.v. omdat de processen moeten wachten op controllers die een taak uitvoeren. Door de regels voor synchrone communicatie via kanalen in de procesalgebraïsche specificatietaal Communicating Sequential Processes te versoepelen, kunnen we de end-to-end executietijd verkorten. In ons onderzoek definiëren we verschillende graafproducten, bewijzen we dat deze producten een prestatiewinst opleveren (onder bepaalde voorwaarden) en we werken de numerieke en combinatorische aspecten van deze graafproducten uit.
Purpose – In the domain of healthcare, both process efficiency and the quality of care can be improved through the use of dedicated pervasive technologies. Among these applications are so-called real-time location systems (RTLS). Such systems are designed to determine and monitor the location of assets and people in real time through the use of wireless sensor networks. Numerous commercially available RTLS are used in hospital settings. The nursing home is a relatively unexplored context for the application of RTLS and offers opportunities and challenges for future applications. The paper aims to discuss these issues. Design/methodology/approach – This paper sets out to provide an overview of general applications and technologies of RTLS. Thereafter, it describes the specific healthcare applications of RTLS, including asset tracking, patient tracking and personnel tracking. These overviews are followed by a forecast of the implementation of RTLS in nursing homes in terms of opportunities and challenges. Findings – By comparing the nursing home to the hospital, the RTLS applications for the nursing home context that are most promising are asset tracking of expensive goods owned by the nursing home in orderto facilitate workflow and maximise financial resources, and asset tracking of personal belongings that may get lost due to dementia. Originality/value – This paper is the first to provide an overview of potential application of RTLS technologies for nursing homes. The paper described a number of potential problem areas that can be addressed by RTLS. Published by Emerald Publishing Limited Original article: https://doi.org/10.1108/JET-11-2017-0046 For this paper Joost van Hoof received the Highly Recommended Award from Emerald Publishing Ltd. in October 2019: https://www.emeraldgrouppublishing.com/authors/literati/awards.htm?year=2019
MULTIFILE