Dienst van SURF
© 2025 SURF
We present the Brigade renderer: an efficient system that uses the path tracing algorithm to produce images for real-time games. We describe the architecture of the Brigade renderer, and provide implementation details. We describe two games that have been created using Brigade.
LINK
The recent success of Machine Learning encouraged research using artificial neural networks (NNs) in computer graphics. A good example is the bidirectional texture function (BTF), a data-driven representation of surface materials that can encapsulate complex behaviors that would otherwise be too expensive to calculate for real-time applications, such as self-shadowing and interreflections. We propose two changes to the state-of-the-art using neural networks for BTFs, specifically NeuMIP. These changes, suggested by recent work in neural scene representation and rendering, aim to improve baseline quality, memory footprint, and performance. We conduct an ablation study to evaluate the impact of each change. We test both synthetic and real data, and provide a working implementation within the Mitsuba 2 rendering framework. Our results show that our method outperforms the baseline in all these metrics and that neural BTF is part of the broader field of neural scene representation. Project website: https://traverse-research.github.io/NeuBTF/.
In recent years, human-induced seismicity in the northern part of the Netherlands increased rendering the seismic response of unreinforced masonry (URM) structures critical. Majority of the existing buildings in the Netherlands are URM, which are not designed to withstand earthquakes. This issue motivates engineering and construction companies in the region to research on the seismic assessment of the existing structures.The companies working in the structural engineering field in the region were forced to adapt very quickly to the earthquake related problems, such as strengthening of existing buildings after earthquake. Such solutions are of prime importance for the Groningen region due to the extent of the earthquake problems and need for strengthening the houses. The research published in the literature show that the connections play an important role in seismic resistant of the houses. Fixing or improving the poor wall-to-wall or floor-to-wall connections may have a large positive impact on the overall seismic behaviour. Some strengthening solutions are already provided by SMEs, and an extensive experimental campaign was carried out at TU Delft on retrofitted connections. In this project, a new experiment will be run on a large shake-table, unique in the Netherlands, that can simulate earthquake vibrations. These tests, together with the previous experience, will complement the overall knowledge on the strengthening solutions and their performance under real-time actual earthquake vibrations.
In recent years, human-induced seismicity in the northern part of the Netherlands increased rendering the seismic response of unreinforced masonry (URM) structures critical. Majority of the existing buildings in the Netherlands are URM, which are not designed to withstand earthquakes. This issue motivates engineering and construction companies in the region to research on the seismic assessment of the existing structures. The companies working in the structural engineering field in the region were forced to adapt very quickly to the earthquake related problems, such as strengthening of existing buildings after earthquake. Such solutions are of prime importance for the Groningen region due to the extent of the earthquake problems and need for strengthening the houses. The research published in the literature show that the connections play an important role in seismic resistant of the houses. Fixing or improving the poor wall-to-wall or floor-to-wall connections may have a large positive impact on the overall seismic behaviour. Some strengthening solutions are already provided by SMEs, and an extensive experimental campaign was carried out at TU Delft on retrofitted connections. In this project, a new experiment will be run on a large shake-table, unique in the Netherlands, that can simulate earthquake vibrations. These tests, together with the previous experience, will complement the overall knowledge on the strengthening solutions and their performance under real-time actual earthquake vibrations.