Dienst van SURF
© 2025 SURF
Learning is all about feedback. Runners, for example, use apps like the RunKeeper. Research shows that apps like that enhance engagement and results. And people think it is fun. The essence being that the behavior of the runner is tracked and communicated back to the runner in a dashboard. We wondered if you can reach the same positive effect if you had a dashboard for Study-behaviour. For students. And what should you measure, track and communicate? We wondered if we could translate the Quantified Self Movement into a Quantified Student. So, together with students, professors and companies we started designing & building Quantified Student Apps. Apps that were measuring all kinds of study-behaviour related data. Things like Time On Campus, Time Online, Sleep, Exercise, Galvanic Skin Response, Study Results and so on. We developed tools to create study – information and prototyped the Apps with groups of student. At the same time we created a Big Data Lake and did a lot of Privacy research. The Big Difference between the Quantified Student Program and Learning Analytics is that we only present the data to the student. It is his/her data! It is his/her decision to act on it or not. The Quantified Student Apps are designed as a Big Mother never a Big Brother. The project has just started. But we already designed, created and learned a lot. 1. We designed and build for groups of prototypes for Study behavior Apps: a. Apps that measure sleep & exercise and compare it to study results, like MyRhytm; b. Apps that measure study hours and compare it to study results, like Nomi; c. Apps that measure group behavior and signal problems, like Groupmotion; d. Apps that measure on campus time and compare it with peers, like workhorse; 2. We researched student fysics to see if we could find his personal Cup-A-Soup-Moment (meaning, can we find by looking at his/her biometrics when the concentration levels dip?); 3. We created a Big Data lake with student data and Open Data and are looking for correlation and causality there. We already found some interesting patterns. In doing so we learned a lot. We learned it is often hard to acquire the right data. It is hard to create and App or a solution that is presenting the data in the right way and presents it in a form of actionable information. We learned that health trackers are still very inprecise. We learned about (and solved some) challenges surrounding privacy. Next year (2017) we will scale the most promising prototype, measure the effects, start a new researchproject and continu working on our data lake. Things will be interesting, and we will blog about it on www.quantifiedstudent.nl.
LINK
Of het nu gaat om het kwantitatief in kaart brengen van het beweeggedrag van een groep kinderen, het overbrengen van kennis over lichaamsbeweging of het creëren van bewustwording over gezond beweeggedrag, er liggen tal van kansen om met nieuwe technologie het vak bewegingsonderwijs te verrijken. In dit artikel is beschreven op welke wijze het project 'Groningen zet stappen' dit in de praktijk heeft toegepast.
A decline in both student well-being and engagement were reported during the COVID-pandemic. Stressors and internal energy sources can co-exist or be both absent, which might cohere with different student needs. This study aimed to develop student profiles on emotional exhaustion and engagement, as well as examine how profiles relate to student participation, academic performance, and overall well-being. Survey-data from 1,460 Dutch higher education students were analyzed and resulted in a quadrant model containing four student profiles on engagement and emotional exhaustion scores. Semi-structured interviews with 13 students and 10 teaching staff members were conducted to validate and further describe the student profiles. The majority of the survey participants were disengaged-exhausted (48%) followed by engaged-exhausted students (29%). Overall, the engagedenergized students performed best academically and had the highest levels of well-being and participation, although engaged-exhausted students were more active in extracurricular activities. The engaged exhausted students also experienced the most pressure to succeed. The qualitative validation of the student profiles demonstrates that students and teachers recognize and associate the profiles with themselves or other students. Changes in the profiles are attributed to internal and external factors, suggesting that they are not fixed but can be influenced by various factors. The practical relevance of the quadrant model is acknowledged by students and teachers and they shared experiences and tips, with potential applications in recognizing students’ well-being and providing appropriate support. This study enriches our grasp of student engagement and well-being in higher education, providing valuable insights for educational practices.
Structural colour (SC) is created by light interacting with regular nanostructures in angle-dependent ways resulting in vivid hues. This form of intense colouration offers commercial and industrial benefits over dyes and other pigments. Advantages include durability, efficient use of light, anti-fade properties and the potential to be created from low cost materials (e.g. cellulose fibres). SC is widely found in nature, examples include butterflies, squid, beetles, plants and even bacteria. Flavobacterium IR1 is a Gram-negative, gliding bacterium isolated from Rotterdam harbour. IR1 is able to rapidly self-assemble into a 2D photonic crystal (a form of SC) on hydrated surfaces. Colonies of IR1 are able to display intense, angle-dependent colours when illuminated with white light. The process of assembly from a disordered structure to intense hues, that reflect the ordering of the cells, is possible within 10-20 minutes. This bacterium can be stored long-term by freeze drying and then rapidly activated by hydration. We see these properties as suiting a cellular reporter system quite distinct from those on the market, SC is intended to be “the new Green Fluorescent Protein”. The ability to understand the genomics and genetics of SC is the unique selling point to be exploited in product development. We propose exploiting SC in IR1 to create microbial biosensors to detect, in the first instance, volatile compounds that are damaging to health and the environment over the long term. Examples include petroleum or plastic derivatives that cause cancer, birth defects and allergies, indicate explosives or other insidious hazards. Hoekmine, working with staff and students within the Hogeschool Utrecht and iLab, has developed the tools to do these tasks. We intend to create a freeze-dried disposable product (disposables) that, when rehydrated, allow IR1 strains to sense and report multiple hazardous vapours alerting industries and individuals to threats. The data, visible as brightly coloured patches of bacteria, will be captured and quantified by mobile phone creating a system that can be used in any location by any user without prior training. Access to advice, assay results and other information will be via a custom designed APP. This work will be performed in parallel with the creation of a business plan and market/IP investigation to prepare the ground for seed investment. The vision is to make a widely usable series of tests to allow robust environmental monitoring for all to improve the quality of life. In the future, this technology will be applied to other areas of diagnostics.