Dienst van SURF
© 2025 SURF
Functional Magnetic Resonance Imaging (fMRI) was used to study the activation of cerebral motor networks during auditory perception of music in professional keyboard musicians (n=12). The activation paradigm implied that subjects listened to two-part polyphonic music, while either critically appraising the performance or imagining they were performing themselves. Two-part polyphonic audition and bimanual motor imagery circumvented a hemisphere bias associated with the convention of playing the melody with the right hand. Both tasks activated ventral premotor and auditory cortices, bilaterally, and the right anterior parietal cortex, when contrasted to 12 musically unskilled controls. Although left ventral premotor activation was increased during imagery (compared to judgment), bilateral dorsal premotor and right posterior-superior parietal activations were quite unique to motor imagery. The latter suggests that musicians not only recruited their manual motor repertoire but also performed a spatial transformation from the vertically perceived pitch axis (high and low sound) to the horizontal axis of the keyboard. Imagery-specific activations in controls were seen in left dorsal parietal-premotor and supplementary motor cortices. Although these activations were less strong compared to musicians, this overlapping distribution indicated the recruitment of a general 'mirror-neuron' circuitry. These two levels of sensori-motor transformations point towards common principles by which the brain organizes audition-driven music performance and visually guided task performance.
Poster presentation at Hanze Research Day 26 januari 2016.
Paperbijdrage conferentie EARLI SIG 14, 11-14 september 2018, Genève Although professional performance at the workplace is essential in VET, little is known about what educators do when assessing students’ performance. This study aims to explore how workplace educators inform their judgements of students’ performance by looking at strategies and potentially influencing factors.
Students in Higher Music Education (HME) are not facilitated to develop both their artistic and academic musical competences. Conservatoires (professional education, or ‘HBO’) traditionally foster the development of musical craftsmanship, while university musicology departments (academic education, or ‘WO’) promote broader perspectives on music’s place in society. All the while, music professionals are increasingly required to combine musical and scholarly knowledge. Indeed, musicianship is more than performance, and musicology more than reflection—a robust musical practice requires people who are versed in both domains. It’s time our education mirrors this blended profession. This proposal entails collaborative projects between a conservatory and a university in two cities where musical performance and musicology equally thrive: Amsterdam (Conservatory and University of Amsterdam) and Utrecht (HKU Utrechts Conservatorium and Utrecht University). Each project will pilot a joint program of study, combining existing modules with newly developed ones. The feasibility of joint degrees will be explored: a combined bachelor’s degree in Amsterdam; and a combined master’s degree in Utrecht. The full innovation process will be translated to a transferable infrastructural model. For 125 students it will fuse praxis-based musical knowledge and skills, practice-led research and academic training. Beyond this, the partners will also use the Comenius funds as a springboard for collaboration between the two cities to enrich their respective BA and MA programs. In the end, the programme will diversify the educational possibilities for students of music in the Netherlands, and thereby increase their professional opportunities in today’s job market.
Collaborative networks for sustainability are emerging rapidly to address urgent societal challenges. By bringing together organizations with different knowledge bases, resources and capabilities, collaborative networks enhance information exchange, knowledge sharing and learning opportunities to address these complex problems that cannot be solved by organizations individually. Nowhere is this more apparent than in the apparel sector, where examples of collaborative networks for sustainability are plenty, for example Sustainable Apparel Coalition, Zero Discharge Hazardous Chemicals, and the Fair Wear Foundation. Companies like C&A and H&M but also smaller players join these networks to take their social responsibility. Collaborative networks are unlike traditional forms of organizations; they are loosely structured collectives of different, often competing organizations, with dynamic membership and usually lack legal status. However, they do not emerge or organize on their own; they need network orchestrators who manage the network in terms of activities and participants. But network orchestrators face many challenges. They have to balance the interests of diverse companies and deal with tensions that often arise between them, like sharing their innovative knowledge. Orchestrators also have to “sell” the value of the network to potential new participants, who make decisions about which networks to join based on the benefits they expect to get from participating. Network orchestrators often do not know the best way to maintain engagement, commitment and enthusiasm or how to ensure knowledge and resource sharing, especially when competitors are involved. Furthermore, collaborative networks receive funding from grants or subsidies, creating financial uncertainty about its continuity. Raising financing from the private sector is difficult and network orchestrators compete more and more for resources. When networks dissolve or dysfunction (due to a lack of value creation and capture for participants, a lack of financing or a non-functioning business model), the collective value that has been created and accrued over time may be lost. This is problematic given that industrial transformations towards sustainability take many years and durable organizational forms are required to ensure ongoing support for this change. Network orchestration is a new profession. There are no guidelines, handbooks or good practices for how to perform this role, nor is there professional education or a professional association that represents network orchestrators. This is urgently needed as network orchestrators struggle with their role in governing networks so that they create and capture value for participants and ultimately ensure better network performance and survival. This project aims to foster the professionalization of the network orchestrator role by: (a) generating knowledge, developing and testing collaborative network governance models, facilitation tools and collaborative business modeling tools to enable network orchestrators to improve the performance of collaborative networks in terms of collective value creation (network level) and private value capture (network participant level) (b) organizing platform activities for network orchestrators to exchange ideas, best practices and learn from each other, thereby facilitating the formation of a professional identity, standards and community of network orchestrators.
Aiming for a more sustainable future, biobased materials with improved performance are required. For biobased vinyl polymers, enhancing performance can be achieved by nanostructuring the material, i.e. through the use of well-defined (multi-)block, gradient, graft, comb, etc., copolymer made by controlled radical polymerization (CRP). Dispoltec has developed a new generation of alkoxyamines, which suppress termination and display enhanced end group stability compared to state-of-art CRP. Hence, these alkoxyamines are particularly suited to provide access to such biobased nanostructured materials. In order to produce alkoxyamines in a more environmentally benign and efficient manner, a photo-chemical step is beneficial for the final stage in their synthesis. Photo-flow chemistry as a process intensification technology is proposed, as flow chemistry inherently leads to more efficient reactions. In particular, photo-flow offers the benefit of significantly enhancing reactant concentrations and reducing batch times due to highly improved illumination. The aim of this project is to demonstrate at lab scale the feasibility of producing the new generation of alkoxy-amines via a photo-flow process under industrially relevant conditions regarding concentration, duration and efficiency. To this end, Zuyd University of Applied Sciences (Zuyd), CHemelot Innovation and Learning Labs (CHILL) and Dispoltec BV want to enter into a collaboration by combining the expertise of Dispoltec on alkoxyamines for CRP with those of Zuyd and CHILL on microreactor technology and flow chemistry. Improved access to these alkoxyamines is industrially relevant for initiator manufacturers, as well as producers of biobased vinyl polymers and end-users aiming to enhance performance through nanostructuring biobased materials. In addition, access in this manner is a clear demonstration for the high industrial potential of photo-flow chemistry as sustainable manufacturing tool. Further to that, students and professionals working together at CHILL will be trained in this emerging, industrially relevant and sustainable processing tool.