Dienst van SURF
© 2025 SURF
This paper addresses the procedural generation of levels for collaborative puzzle-platform games. To address this issue, we distinguish types of multiplayer interaction, focusing on two-player collaboration, and identify relevant game mechanics for a puzzle-platform game, addressing player movement, interaction with moving game objects, and physical interaction involving both players. These are further formalized as game design patterns. To test the feasibility of the approach, a level generator has been implemented based on a rule-based approach, using the existing tool called Ludoscope and a prototype game developed in the Unity game engine. The level generation procedure results in over 3.7 million possible playable level variations that can be generated automatically. Each of these levels encourages or even requires both players to engage in collaborative gameplay.
Grammar-based procedural level generation raises the productivity of level designers for games such as dungeon crawl and platform games. However, the improved productivity comes at cost of level quality assurance. Authoring, improving and maintaining grammars is difficult because it is hard to predict how each grammar rule impacts the overall level quality, and tool support is lacking. We propose a novel metric called Metric of Added Detail (MAD) that indicates if a rule adds or removes detail with respect to its phase in the transformation pipeline, and Specification Analysis Reporting (SAnR) for expressing level properties and analyzing how qualities evolve in level generation histories. We demonstrate MAD and SAnR using a prototype of a level generator called Ludoscope Lite. Our preliminary results show that problematic rules tend to break SAnR properties and that MAD intuitively raises flags. MAD and SAnR augment existing approaches, and can ultimately help designers make better levels and level generators.
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.
A research theme examining story structure (linear, branching, and procedural), narrative design, and writing for video games.
Despite the vast potential drone technologies have, their integration to our society has been slow due to restricting regulations. Recently, a new EU-wide drone regulation has been published. This regulation is intended to harmonize the non-uniform national regulations across EU. It also relaxes the existing restrictions and allows previously prohibited operations that have significant socio-economic and technological impacts, such as autonomous BVLOS flights even over populated areas. However, there are challenges with regard to specifics and accessibilities of the required technological & procedural prerequisite this regulation entails. There is, therefore, a demand from SMEs for practical knowledge on technological and procedural aspects of a safe, robust and BVLOS operable security drone with short and long-term autonomy that fully complies to the new drone regulation. The required drone technologies include robust obstacle avoidance, intelligence failsafe for robust, reliable and safe autonomous flights with long-term autonomy capabilities. The operational procedures include SORA, pre/in/post-flight analysis and ROC/LUC permissions. In this project, these two aspects will be addressed in an integral manner. The consortium recognizes that developing such advanced security drone in two years is ambitious. Yet, they firmly believe that it is realizable due to the complementary expertise of the consortium and their commitment for the success of the project. With this project, the knowledge institutes will enrich their practical knowledge in the area of autonomous and BVLOS capable drones, operational procedures, risk analysis and mitigations. The partner companies will be equipped with the necessary technologies, operation permission and knowledge on optimal operation procedures to be at the forefront and benefit from the exploding market opportunities when the new regulation is fully implemented in July 2022. Moreover, this project will also make a demonstrable contribution to the renewal of higher professional education.