Dienst van SURF
© 2025 SURF
This is the first draft of the large scale 3d printing protocol for granulated thermoplastics. The main purpose of this document is to share the key steps of operating, preparation, data entry, and optimization procedures while handling the robotic 3d printing equipment. One main aspect of this protocol is that it is independent of specific 3d printing hardware or software setups. The aim is to have the users from robotic 3d printing from various technologies follow these steps and be able to set the basics up when it comes to handling such 3d printers.
The additive manufacturing (AM) of high-quality products requires knowledge of the 3D-printing process and the related design guidelines. Allthough AM has been around for some years, many engineers still lack this knowledge. Therefore, Fontys University of Applied Sciences sets great store by training of engineers, education of engineering students and knowledge sharing on this topic. As an appetiser, this article offers a beginner’s course.
This study explores the shape-morphing behavior of 4D-printed structures made from Polylactic Acid (PLA), a prominent bio-sourced shape-memory polymer. Focusing on the response of these structures to thermal stimuli, this research investigates how various printing parameters influence their morphing capabilities. The experimental approach integrates design and slicing, printing using fused deposition modeling (FDM), and a post-printing activation phase in a controlled laboratory environment. This process aims to replicate the external stimuli that induce shape morphing, highlighting the dynamic potential of 4D printing. Utilizing Taguchi’s Design of Experiments (DoE), this study examines the effects of printing speed, layer height, layer width, nozzle temperature, bed temperature, and activation temperature on the morphing behavior. The analysis includes precise measurements of deformation parameters, providing a comprehensive understanding of the morphing process. Regression models demonstrate strong correlations with observed data, suggesting their effectiveness in predicting responses based on control parameters. Additionally, finite element analysis (FEA) modeling successfully predicts the performance of these structures, validating its application as a design tool in 4D printing. This research contributes to the understanding of 4D printing dynamics and offers insights for optimizing printing processes to harness the full potential of shape-morphing materials. It sets a foundation for future research, particularly in exploring the relationship between printing parameters and the functional capabilities of 4D-printed structures.
Currently, many novel innovative materials and manufacturing methods are developed in order to help businesses for improving their performance, developing new products, and also implement more sustainability into their current processes. For this purpose, additive manufacturing (AM) technology has been very successful in the fabrication of complex shape products, that cannot be manufactured by conventional approaches, and also using novel high-performance materials with more sustainable aspects. The application of bioplastics and biopolymers is growing fast in the 3D printing industry. Since they are good alternatives to petrochemical products that have negative impacts on environments, therefore, many research studies have been exploring and developing new biopolymers and 3D printing techniques for the fabrication of fully biobased products. In particular, 3D printing of smart biopolymers has attracted much attention due to the specific functionalities of the fabricated products. They have a unique ability to recover their original shape from a significant plastic deformation when a particular stimulus, like temperature, is applied. Therefore, the application of smart biopolymers in the 3D printing process gives an additional dimension (time) to this technology, called four-dimensional (4D) printing, and it highlights the promise for further development of 4D printing in the design and fabrication of smart structures and products. This performance in combination with specific complex designs, such as sandwich structures, allows the production of for example impact-resistant, stress-absorber panels, lightweight products for sporting goods, automotive, or many other applications. In this study, an experimental approach will be applied to fabricate a suitable biopolymer with a shape memory behavior and also investigate the impact of design and operational parameters on the functionality of 4D printed sandwich structures, especially, stress absorption rate and shape recovery behavior.
In het project 'Circular Material Testing for 3DP' (CMT) willen partners HB3D en Bambooder samen met de Hogeschool van Amsterdam (HvA) de geschiktheid beoordelen van verschillende circulaire materialen voor 3D-printen (3DP) met industriële robots, om een verdere verduurzaming van deze technologie te ondersteunen. Verschillende materialen zullen worden onderzocht en vergeleken op hun optimale printomstandigheden. Er zal een beoordelingsprotocol worden ontwikkeld om de materialen te beoordelen. Dit protocol introduceert a) specifiek ontworpen 3D-objecten die kunnen helpen bij het demonstreren en vergelijken van printcapaciteiten; b) specifieke tests om de mechanische eigenschappen van het materiaal te bepalen en c) circulaire experimenten om de 3DP-levenscyclus van deze materiaalstromen te controleren (d.w.z. de mogelijkheid om opnieuw te printen met het materiaal van een oude print). Alle resultaten zullen op een uniforme en uitgebreide manier worden gepresenteerd om de norm te stellen voor toekomstige tests en om ontwerpers / producenten te ondersteunen bij het selecteren van materialen voor Robot 3DP-toepassingen. Onderzoek wordt uitgevoerd door de Digital Production Research Group van het Centre of Expertise Urban Technology, samen met bovengenoemde partners, die leveranciers zijn van biobased plastics (Bambooder) en Robot 3DP toepassen (HB3D). De ontwikkelde tests zullen worden toegepast op standaard, fossiel polymeermateriaal, en vervolgens op twee nieuwe, circulaire materialen voor 3DP, geleverd door Bambooder en HB3D (die circulaire printmaterialen van DSM gaat leveren). Het project werkt toe naar een standaard beoordelingsprotocol (inclusief circulariteit) dat de acceptatie van nieuwe materialen voor 3DP kan vergemakkelijken. Een dergelijk protocol biedt materiaaleigenaren nieuwe kansen om hun specifieke afvalstromen te upcyclen. CMT is een belangrijke en gewenste stap richting industrieel 3D-printen met circulaire materialen, dat bijdraagt aan de ontwikkeling van slimme industrie en circulaire economie, beide relevant voor de maatschappelijke uitdagingen zoals opgenomen in de nationale Kennis- en Innovatieagenda voor wetenschap en technologie.
A feeling of worry, anxiety, loneliness and anticipation are commonplace in both medical and non-medical arenas such as elderly care. An innovative solution such as the ‘simple and effective’ comfyhand would offer better patient care and improved care efficiency with a high chance of long-term, economic efficiency. ComfyHand is a start-up in the healthcare sector that aims to develop sustainable products to improve patient wellbeing in healthcare settings. It does this by emulating the experience of holding a hand which gives the person comfort and support in moments where real human contact is not possible. Right now the comfyhand is in the development phase, working on several prototypes for test trials in elderly care and hospitals. In this project we want to explore the use of 3D printing for producing a comfyhand. Desired properties for the prototype include optimal heat transfer, softness, regulation of sweat, durability and sustainability. The goal of this study is to develop a prototype to test in a trial with patients within Envida, a care centre. The trial itself is out of scope of this project. This proposal focuses on researching the material of choice and the processability. Building on knowledge gained in a previous Kiem GoChem project and a Use Case (Shape3Dup) of a currently running Raak MKB project (Enlighten) on 3D printing of breast prostheses, several materials, designs and printing parameters will be tested.