Dienst van SURF
© 2025 SURF
In manufacturing of organic electronics, inkjet printing as an alternative technique for depositing materials is becoming increasingly important. Aside to the ink formulations challenges, improving the resolution of the printed patterns is a major goal. In this study we will discuss a newly developed technique to selectively modify the substrate surface energy using plasma treatment as a means to achieve this goal. First, we look at the effects of the μPlasma treatment on the surface energy for a selection of plastic films. Second, we investigated the effects of the μPlasma treatment on the wetting behaviour of inkjet printed droplets to determine the resolution of the μPlasma printing technique. We found that the surface energy for all tested films increased significantly reaching a maximum after 3-5 repetitions. Subsequently the surface energy decreased in the following 8-10 days after treatment, finally stabilizing at a surface energy roughly halfway between the surface energy of the untreated film and the maximum obtained surface energy. When μPlasma printing lines, an improved wetting abillity of inkjet printed materials on the plasma treated areas was found. The minimal achieved μPlasma printed line was found to be 1 mm wide. For future application it is important to increase the resolution of the plasma print process. This is crucial for combining plasma treatment with inkjet print technology as a means to obtain higher print resolutions.
Apart from tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA), a third PA appears to occur in human plasma. Its activity is initiated when appropriate triggers of the contact system are added, and the activation depends on the presence of factor XII and prekallikrein in plasma. The activity of this, so-called, contact-system dependent PA accounts for 30% of the PA activity in the dextran sulphate euglobulin fraction of plasma and was shown not to be an intrinsic property of one of the contact-system components, nor could it be inhibited by inhibitory antibodies against t-PA or u-PA. We have succeeded in identifying this third PA in dextran sulphate euglobulin fractions of human plasma. Its smallest unit (SDS-PAGE) is an inactive 110 kDa single-chain polypeptide which upon activation of the contact system is converted to a cleaved, disulphide-bridged molecule with PA activity. The native form, presumably, is an oligomer, since the apparent Mr on gel-chromatography is 600,000. The IEP is 4.8, much lower than that of t-PA and u-PA. Although the active 110 kDa polypeptide cannot be inhibited by anti-u-PA, it yet comprises a 37 kDa piece with some u-PA related antigenic determinants. However, these determinants are in a latent or cryptic form, only detectable after denaturation by SDS. The 110 kDa polypeptide is evidently not a dimer of 55 kDa u-PA or a complex of u-PA with an inhibitor.(ABSTRACT TRUNCATED AT 250 WORDS)
LINK
Plasma treatment is a commonly used technology to modify the wetting behavior of polymer films in the production process for, e.g., printed electronics. As the effect of the plasma treatment decreases in time, the so-called "aging effect", it is important to gain knowledge on how this effect impacts the wetting behavior of commonly used polymers in order to be able to optimize production processing times. In this article the authors study the wetting behavior of polyethylene naphthalate (PEN), polyethylene terephthalate (PET), polycarbonate (PC), fluorinated ethylene propylene (FEP) and polyimide (PI) polymer films after plasma treatment in time. The plasma treatment was performed using a novel maskless DBD plasma patterning technology, i.e., Plasma Printing, at atmospheric pressure under nitrogen atmosphere. After treatment, the samples were stored at room temperature at 30%-40% relative humidity for up to one month. An increase in wettability is measured for all polymers directly after Plasma Printing. The major increase in wettability occurs after a small number of treatments, e.g., low energy density. More treatments show no further beneficial gain in wettability. The increase in wettability is mainly due to an increase in the polar part of the surface energy, which can probably be attributed to chemical modification of the surface of the investigated polymers. With the exception of FEP, during storage of the plasma treated polymers, the wettability partially declines in the first five days, after which it stabilizes to approximately 50% of its original state. The wettability of FEP shows little decline during storage. As the storage time between production steps is mostly under two days, Plasma Printing shows good promise as a pre-treatment step in the production of printed electronics. d c 2013 Society for Imaging Science and Technology.
LINK
Fontys University of Applied Science’s Institute of Engineering, and the Dutch Institute for Fundamental Energy Research (DIFFER) are proposing to set up a professorship to develop novel sensors for fusion reactors. Sensors are a critical component to control and optimise the unstable plasma of Tokamak reactors. However, sensor systems are particularly challenging in fusion-plasma facing components, such as the divertor. The extreme conditions make it impossible to directly incorporate sensors. Furthermore, in advanced reactor concepts, such as DEMO, access to the plasma via ports will be extremely limited. Therefore, indirect or non-contact sensing modalities must be employed. The research group Distributed Sensor Systems (DSS) will develop microwave sensor systems for characterising the plasma in a tokamak’s divertor. DSS will take advantage of recent rapid developments in high frequency integrated circuits, found, for instance, in automotive radar systems, to develop digital reflectometers. Access through the divertor wall will be achieved via surface waveguide structures. The waveguide will be printed using 3D tungsten printing that has improved precision, and reduced roughness. These components will be tested for durability at DIFFER facilities. The performance of the microwave reflectometer, including waveguides, will be tested by using it to analyse the geometry and dynamics of the Magnum PSI plasma beam. The development of sensor-based systems is an important aspect in the integrated research and education program in Electrical Engineering, where DSS is based. The sensing requirements from DIFFER offers an interesting and highly relevant research theme to DSS and exciting projects for engineering students. Hence, this collaboration will strengthen both institutes and the educational offerings at the institute of engineering. Furthermore millimeter wave (mmWave) sensors have a wide range of potential applications, from plasma characterisation (as in this proposal) though to waste separation. Our research will be a step towards realising these broader application areas.
HCA Groenvermogen NL vormt de aanleiding en het kader voor het aanstellen van Regionale Liaisons en het opstellen van Regionale Roadmapsin zes regio’s. Deze hebben als rol en functie de regio’s te mobiliseren voor Learning Communities en de uitwisseling binnen het Nationale Kennisplatform. Hierbij is Chemelot geïdentificeerd als één van die zes regio’s, en is Zuyd Hogeschool benaderd om een aanvraag voor te bereiden. ▪ Chemelot is een interessante locatie voor een doorgedreven inzet van Learning Communities op het gebied van waterstof. Waterstof is een belangrijk grondstof in de chemie en wordt vandaag geproduceerd uit aardgas. Ambitie is tegen 2050 duurzame waterstof zonder CO2- emissies te produceren. Samen met elektrificatie zal duurzame waterstof de energie- en grondstoffentransitie op Chemelot vormgeven. Daarnaast is op Chemelot reeds 10 jaar de Chemelot Innovation and Learning Labs (CHILL) actief, een publiek-private samenwerking tussen Universiteit Maastricht, Vista college, Zuyd Hogeschool en bedrijven als DSM, Sabic en Fibrant, en als dusdanig een Learning Community voor de verduurzaming van de chemie. ▪ De transitie naar een duurzame chemie is de inzet van de brede triple alliantie Chemelot Circular Hub (CCH) en haar Circulaire Economie Actieplan (CEAP). De CEAP vormt het referentiekader voor de verdere uitwerking van de Regionale Roadmap, met als focus het binden van talenten, aantrekken van gamechangers, topfaciliteiten voor onderzoek en innovatie incl. digitalisering. Het Regionale Liaisons-team is samengesteld uit experten vanuit de onderwijsinstellingen, CHILL, Brightsite en de CCH- programmamanager. Het team wordt ingebed in de CCH-governance, wat de afstemming met andere projecten binnen o.a. het Groeifonds en JTF borgt. Tot slot spiegelt onze aanpak zich aan de werkstromen binnen HCA GroenvermogenNL, dit in functie van een sterke synergie tussen regionale en nationale acties. Verdiepen van de kennisbasis, versterken van de samenwerking en versnellen van innovatieve onderwijs- en arbeidsmarktinitiatieven zijn hierin leidende principes.
Biotherapeutic medicines such as peptides, recombinant proteins, and monoclonal antibodies have successfully entered the market for treating or providing protection against chronic and life-threatening diseases. The number of relevant commercial products is rapidly increasing. Due to degradation in the gastro-intestinal tract, protein-based drugs cannot be taken orally but need to be administered via alternative routes. The parenteral injection is still the most widely applied administration route but therapy compliance of injection-based pharmacotherapies is a concern. Long-acting injectable (LAI) sustained release dosage forms such as microparticles allow less frequent injection to maintain plasma levels within their therapeutic window. Spider Silk Protein and Poly Lactic-co-Glycolic Acid (PLGA) have been attractive candidates to fabricate devices for drug delivery applications. However, conventional microencapsulation processes to manufacture microparticles encounter drawbacks such as protein activity loss, unacceptable residual organic solvents, complex processing, and difficult scale-up. Supercritical fluids (SCF), such as supercritical carbon dioxide (scCO2), have been used to produce protein-loaded microparticles and is advantageous over conventional methods regarding adjustable fluid properties, mild operating conditions, interfacial tensionless, cheap, non-toxicity, easy downstream processing and environment-friendly. Supercritical microfluidics (SCMF) depict the idea to combine strengths of process scale reduction with unique properties of SCF. Concerning the development of long-acting microparticles for biological therapeutics, SCMF processing offers several benefits over conventionally larger-scale systems such as enhanced control on fluid flow and other critical processing parameters such as pressure and temperature, easy modulation of product properties (such as particle size, morphology, and composition), cheaper equipment build-up, and convenient parallelization for high-throughput production. The objective of this project is to develop a mild microfluidic scCO2 based process for the production of long-acting injectable protein-loaded microparticles with, for example, Spider Silk Protein or PLGA as the encapsulating materials, and to evaluate the techno-economic potential of such SCMF technology for practical & industrial production.