Dienst van SURF
© 2025 SURF
Parental involvement is a crucial force in children’s development, learning and success at school and in life [1]. Participation, defined by the World Health Organization as ‘a person’s involvement in life situations’ [2] for children means involvement in everyday activities, such as recreational, leisure, school and household activities [3]. Several authors use the term social participation emphasising the importance of engagement in social situations [4, 5]. Children’s participation in daily life is vital for healthy development, social and physical competencies, social-emotional well-being, sense of meaning and purpose in life [6]. Through participation in different social contexts, children gather the knowledge and skills needed to interact, play, work, and live with other people [4, 7, 8]. Unfortunately, research shows that children with a physical disability are at risk of lower participation in everyday activities [9]; they participate less frequently in almost all activities compared with children without physical disabilities [10, 11], have fewer friends and often feel socially isolated [12-14]. Parents, in particular, positively influence the participation of their children with a physical disability at school, at home and in the community [15]. They undertake many actions to improve their child’s participation in daily life [15, 16]. However, little information is available about what parents of children with a physical disability do to enable their child’s participation, what they come across and what kind of needs they have. The overall aim of this thesis was to investigate parents’ actions, challenges, and needs while enhancing the participation of their school-aged child with a physical disability. In order to achieve this aim, two steps have been made. In the first step, the literature has been examined to explore the topic of this thesis (actions, challenges and needs) and to clarify definitions for the concepts of participation and social participation. Second, for the purposes of giving breadth and depth of understanding of the topic of this thesis a mixed methods approach using three different empirical research methods [17-19], was applied to gather information from parents regarding their actions, challenges and needs.
Progressive disability develops with older age in association with underlying disease, comorbidity and frailty. Physical performance characteristics are important to improve the physical condition of older persons and therefore may be able to prevent or delay the onset of (progressive) disability. However lack of understanding of the physiology and etiology of functional decline leading to disability causes a problem in the development of effective preventive interventions. The aim of the present review is to determine which physical performance characteristics are determinants of disability in the older general population.
Cardiovascular disease is an important cause of disability in activities of daily living (ADL) through its effect on physical functioning. However, it is unclear whether subclinical vascular abnormalities and rate of change in subclinical vascular abnormalities is also associated with an impaired physical ability and with ADL disability. In a longitudinal study, 490 middle-aged and older persons were included. Physical ability was measured using the Short Physical Performance Battery and ADL disability using a questionnaire on self-reported basic and instrumental ADL. Subclinical vascular abnormalities were measured by pulse wave velocity (PWV) and carotid intima media thickness (CIMT, in men only). Longitudinal associations between baseline markers of subclinical vascular abnormalities, their rate of change, and change in physical ability or ADL disability were assessed using generalized estimation equation models. After adjustment for confounders, higher baseline PWV, change in PWV, baseline CIMT (in men) and change in CIMT (in men) were associated with a higher rate of change in physical ability (regression coefficients 0.035, 95% CI [0.018; 0.052]; 0.047, 95% CI [0.024; 0.069]; 0.214, 95% CI [0.070; 0.358] and 0.148, 95% CI [0.019; 0.277], respectively). No relations were found for change in ADL disability. In subjects with incident cardiovascular disease, higher change in PWV was associated with a higher rate of change in ADL disability (regression coefficient 0.054, 95% CI [0.001; 0.106]). The present study showed that subclinical vascular abnormalities and rate of change were associated with higher rate of change in physical ability. The association between (change in) subclinical vascular abnormalities and ADL disability tended to be stronger in persons with incident and prevalent cardiovascular disease. These data may suggest that ADL decline is more a direct effect of experienced clinically manifest vascular events rather than the effect of progression of subclinical vascular abnormalities.
LINK
Horse riding falls under the “Sport for Life” disciplines, where a long-term equestrian development can provide a clear pathway of developmental stages to help individuals, inclusive of those with a disability, to pursue their goals in sport and physical activity, providing long-term health benefits. However, the biomechanical interaction between horse and (disabled) rider is not wholly understood, leaving challenges and opportunities for the horse riding sport. Therefore, the purpose of this KIEM project is to start an interdisciplinary collaboration between parties interested in integrating existing knowledge on horse and (disabled) rider interaction with any novel insights to be gained from analysing recently collected sensor data using the EquiMoves™ system. EquiMoves is based on the state-of-the-art inertial- and orientational-sensor system ProMove-mini from Inertia Technology B.V., a partner in this proposal. On the basis of analysing previously collected data, machine learning algorithms will be selected for implementation in existing or modified EquiMoves sensor hardware and software solutions. Target applications and follow-ups include: - Improving horse and (disabled) rider interaction for riders of all skill levels; - Objective evidence-based classification system for competitive grading of disabled riders in Para Dressage events; - Identifying biomechanical irregularities for detecting and/or preventing injuries of horses. Topic-wise, the project is connected to “Smart Technologies and Materials”, “High Tech Systems & Materials” and “Digital key technologies”. The core consortium of Saxion University of Applied Sciences, Rosmark Consultancy and Inertia Technology will receive feedback to project progress and outcomes from a panel of international experts (Utrecht University, Sport Horse Health Plan, University of Central Lancashire, Swedish University of Agricultural Sciences), combining a strong mix of expertise on horse and rider biomechanics, veterinary medicine, sensor hardware, data analysis and AI/machine learning algorithm development and implementation, all together presenting a solid collaborative base for derived RAAK-mkb, -publiek and/or -PRO follow-up projects.
Low back pain is the leading cause of disability worldwide and a significant contributor to work incapacity. Although effective therapeutic options are scarce, exercises supervised by a physiotherapist have shown to be effective. However, the effects found in research studies tend to be small, likely due to the heterogeneous nature of patients' complaints and movement limitations. Personalized treatment is necessary as a 'one-size-fits-all' approach is not sufficient. High-tech solutions consisting of motions sensors supported by artificial intelligence will facilitate physiotherapists to achieve this goal. To date, physiotherapists use questionnaires and physical examinations, which provide subjective results and therefore limited support for treatment decisions. Objective measurement data obtained by motion sensors can help to determine abnormal movement patterns. This information may be crucial in evaluating the prognosis and designing the physiotherapy treatment plan. The proposed study is a small cohort study (n=30) that involves low back pain patients visiting a physiotherapist and performing simple movement tasks such as walking and repeated forward bending. The movements will be recorded using sensors that estimate orientation from accelerations, angular velocities and magnetometer data. Participants complete questionnaires about their pain and functioning before and after treatment. Artificial analysis techniques will be used to link the sensor and questionnaire data to identify clinically relevant subgroups based on movement patterns, and to determine if there are differences in prognosis between these subgroups that serve as a starting point of personalized treatments. This pilot study aims to investigate the potential benefits of using motion sensors to personalize the treatment of low back pain. It serves as a foundation for future research into the use of motion sensors in the treatment of low back pain and other musculoskeletal or neurological movement disorders.
The clubfoot deformity is one of the most common congenital orthopaedic “conditions”. Worldwide approximately 100,000 children are born with unilateral or bilateral clubfoot every year. In the Netherlands the incidence is approximately 175 every year. This three dimensional deformity of the foot involves, equinus, varus, adductus, and cavus . Left untreated the clubfoot leads to deformity, functional disability and pain. Physical impairments of children with clubfoot might lead to limitations in activities and therefore impede a child’s participation. In clinical practice, the orthopaedic surgeon and physiotherapists are regularly consulted by (parents of) clubfoot patients for functional problems such as impaired walking and other daily activities. This does not only affect long-term and physical health of a child, it will also affect the development of social relationships and skills as well. Since walking is a main activity in children to be able to participate in daily life, our previous study (financially supported by SIA Raak Publiek) focussed on gait differences between children with clubfoot and controls. However, differences in gait characteristics do not necessarily lead to functional limitations and restricted participation. Therefore, providing insight in participation and a child’s performance in other activities than walking is necessary. Insight in a child’s participation will also indicate the functional outcome of the treatment, which on its turn could provide essential information concerning a possible relapse.. Early identification of a relapse is important since it could prevent the need for major surgical interventions. The occurrence of a relapse clubfoot will probably also lead to functional differences in the foot as well as problems during activity and participation. Therefore, the main focus of this study is the functional outcomes of physical activities and the characterisation of participation of children with clubfeet in daily activities of childhood.