Dienst van SURF
© 2025 SURF
Living a sedentary lifestyle is one of the major causes of numerous health problems. To encourage employees to lead a less sedentary life, the Hanze University started a health promotion program. One of the interventions in the program was the use of an activity tracker to record participants' daily step count. The daily step count served as input for a fortnightly coaching session. In this paper, we investigate the possibility of automating part of the coaching procedure on physical activity by providing personalized feedback throughout the day on a participant's progress in achieving a personal step goal. The gathered step count data was used to train eight different machine learning algorithms to make hourly estimations of the probability of achieving a personalized, daily steps threshold. In 80% of the individual cases, the Random Forest algorithm was the best performing algorithm (mean accuracy = 0.93, range = 0.88–0.99, and mean F1-score = 0.90, range = 0.87–0.94). To demonstrate the practical usefulness of these models, we developed a proof-of-concept Web application that provides personalized feedback about whether a participant is expected to reach his or her daily threshold. We argue that the use of machine learning could become an invaluable asset in the process of automated personalized coaching. The individualized algorithms allow for predicting physical activity during the day and provides the possibility to intervene in time.
Learning objects are bits of learning content. They may be reused 'as is' (simple reuse) or first be adapted to a learner's particular needs (flexible reuse). Reuse matters because it lowers the development costs of learning objects, flexible reuse matters because it allows one to address learners' needs in an affordable way. Flexible reuse is particularly important in the knowledge economy, where learners not only have very spefic demands but often also need to pay for their own further education. The technical problems to simple and flexible are rapidly being resolved in various learning technology standardisation bodies. This may suggest that a learning object economy, in which learning objects are freely exchanged, updated and adapted, is about to emerge. Such a belief, however, ignores the significant psychological, social and organizational barriers to reuse that still abound. An inventory of these problems is made and possible ways to overcome them are discussed.
Background: Follow‑up of curatively treated primary breast cancer patients consists of surveillance and aftercare and is currently mostly the same for all patients. A more personalized approach, based on patients’ individual risk of recurrence and personal needs and preferences, may reduce patient burden and reduce (healthcare) costs. The NABOR study will examine the (cost‑)effectiveness of personalized surveillance (PSP) and personalized aftercare plans (PAP) on patient‑reported cancer worry, self‑rated and overall quality of life and (cost‑)effectiveness. Methods: A prospective multicenter multiple interrupted time series (MITs) design is being used. In this design, 10 participating hospitals will be observed for a period of eighteen months, while they ‑stepwise‑ will transit from care as usual to PSPs and PAPs. The PSP contains decisions on the surveillance trajectory based on individual risks and needs, assessed with the ‘Breast Cancer Surveillance Decision Aid’ including the INFLUENCE prediction tool. The PAP contains decisions on the aftercare trajectory based on individual needs and preferences and available care resources, which decision‑making is supported by a patient decision aid. Patients are non‑metastasized female primary breast cancer patients (N= 1040) who are curatively treated and start follow‑up care. Patient reported outcomes will be measured at five points in time during two years of follow‑up care (starting about one year after treatment and every six months thereafter). In addition, data on diagnostics and hospital visits from patients’ Electronical Health Records (EHR) will be gathered. Primary outcomes are patient‑reported cancer worry (Cancer Worry Scale) and over‑all quality of life (as assessed with EQ‑VAS score). Secondary outcomes include health care costs and resource use, health‑related quality of life (as measured with EQ5D‑5L/SF‑12/EORTC‑QLQ‑C30), risk perception, shared decision‑making, patient satisfaction, societal participation, and cost‑effectiveness. Next, the uptake and appreciation of personalized plans and patients’ experiences of their decision‑making process will be evaluated. Discussion: This study will contribute to insight in the (cost‑)effectiveness of personalized follow‑up care and contributes to development of uniform evidence‑based guidelines, stimulating sustainable implementation of personalized surveillance and aftercare plans. Trial registration: Study sponsor: ZonMw. Retrospectively registered at ClinicalTrials.gov (2023), ID: NCT05975437.
MULTIFILE
Despite the recognized benefits of running for promoting overall health, its widespread adoption faces a significant challenge due to high injury rates. In 2022, runners reported 660,000 injuries, constituting 13% of the total 5.1 million sports-related injuries in the Netherlands. This translates to a disturbing average of 5.5 injuries per 1,000 hours of running, significantly higher than other sports such as fitness (1.5 injuries per 1,000 hours). Moreover, running serves as the foundation of locomotion in various sports. This emphasizes the need for targeted injury prevention strategies and rehabilitation measures. Recognizing this social issue, wearable technologies have the potential to improve motor learning, reduce injury risks, and optimize overall running performance. However, unlocking their full potential requires a nuanced understanding of the information conveyed to runners. To address this, a collaborative project merges Movella’s motion capture technology with Saxion’s expertise in e-textiles and user-centered design. The result is the development of a smart garment with accurate motion capture technology and personalized haptic feedback. By integrating both sensor and actuator technology, feedback can be provided to communicate effective risks and intuitive directional information from a user-centered perspective, leaving visual and auditory cues available for other tasks. This exploratory project aims to prioritize wearability by focusing on robust sensor and actuator fixation, a suitable vibration intensity and responsiveness of the system. The developed prototype is used to identify appropriate body locations for vibrotactile stimulation, refine running styles and to design effective vibration patterns with the overarching objective to promote motor learning and reduce the risk of injuries. Ultimately, this collaboration aims to drive innovation in sports and health technology across different athletic disciplines and rehabilitation settings.
Lack of physical activity in urban contexts is an increasing health risk in The Netherlands and Brazil. Exercise applications (apps) are seen as potential ways of increasing physical activity. However, physical activity apps in app stores commonly lack a scientific base. Consequently, it remains unknown what specific content messages should contain and how messages can be personalized to the individual. Moreover, it is unknown how their effects depend on the physical urban environment in which people live and on personal characteristics and attitudes. The current project aims to get insight in how mobile personalized technology can motivate urban residents to become physically active. More specifically, we aim to gain insight into the effectiveness of elements within an exercise app (motivational feedback, goal setting, individualized messages, gaming elements (gamification) for making people more physically active, and how the effectiveness depends on characteristics of the individual and the urban setting. This results in a flexible exercise app for inactive citizens based on theories in data mining, machine learning, exercise psychology, behavioral change and gamification. The sensors on the mobile phone, together with sensors (beacons) in public spaces, combined with sociodemographic and land use information will generate a massive amount of data. The project involves analysis in two ways. First, a unique feature of our project is that we apply machine learning/data mining techniques to optimize the app specification for each individual in a dynamic and iterative research design (Sequential Multiple Assignment Randomised Trial (SMART)), by testing the effectiveness of specific messages given personal and urban characteristics. Second, the implementation of the app in Sao Paolo and Amsterdam will provide us with (big) data on use of functionalities, physical activity, motivation etc. allowing us to investigate in detail the effects of personalized technology on lifestyle in different geographical and cultural contexts.
Lack of physical activity in urban contexts is an increasing health risk in The Netherlands and Brazil. Exercise applications (apps) are seen as potential ways of increasing physical activity. However, physical activity apps in app stores commonly lack a scientific base. Consequently, it remains unknown what specific content messages should contain and how messages can be personalized to the individual. Moreover, it is unknown how their effects depend on the physical urban environment in which people live and on personal characteristics and attitudes. The current project aims to get insight in how mobile personalized technology can motivate urban residents to become physically active. More specifically, we aim to gain insight into the effectiveness of elements within an exercise app (motivational feedback, goal setting, individualized messages, gaming elements (gamification) for making people more physically active, and how the effectiveness depends on characteristics of the individual and the urban setting. This results in a flexible exercise app for inactive citizens based on theories in data mining, machine learning, exercise psychology, behavioral change and gamification. The sensors on the mobile phone, together with sensors (beacons) in public spaces, combined with sociodemographic and land use information will generate a massive amount of data. The project involves analysis in two ways. First, a unique feature of our project is that we apply machine learning/data mining techniques to optimize the app specification for each individual in a dynamic and iterative research design (Sequential Multiple Assignment Randomised Trial (SMART)), by testing the effectiveness of specific messages given personal and urban characteristics. Second, the implementation of the app in Sao Paolo and Amsterdam will provide us with (big) data on use of functionalities, physical activity, motivation etc. allowing us to investigate in detail the effects of personalized technology on lifestyle in different geographical and cultural contexts.