The following paper presents a methodology we developed for addressing the case of a multi-modal network to be implemented in the future. The methodology is based on a simulation approach and presents some characteristics that make a challenge to be verified and validated. To overcome this limitation, we proposed a novel methodology that implies interaction with subjectmatter experts, revision of current data, collection and assessment of future performance and educated assumptions. With that methodology we could construct the complete passenger trajectory Door to door in Europe. The results indicate that the approach allows to approach infrastructure analysis at an early stage to have an initial estimation of the upper boundary of performance indicators. To exemplify this, we present the results for a case study in Europe.
The following paper presents a methodology we developed for addressing the case of a multi-modal network to be implemented in the future. The methodology is based on a simulation approach and presents some characteristics that make a challenge to be verified and validated. To overcome this limitation, we proposed a novel methodology that implies interaction with subjectmatter experts, revision of current data, collection and assessment of future performance and educated assumptions. With that methodology we could construct the complete passenger trajectory Door to door in Europe. The results indicate that the approach allows to approach infrastructure analysis at an early stage to have an initial estimation of the upper boundary of performance indicators. To exemplify this, we present the results for a case study in Europe.
This paper presents the results of an experimental field study, in which the effects were studied of personalized travel feedback on car owners’ car habits, awareness of the environmental impact of their travel choices, and the intention to switch modes. For a period of six weeks, 349 car owners living in Amsterdam used a smart mobility app that automatically registered all their travel movements. Participants in the experiment group received information about travel distance, time, and CO2 emission. Results show that the feedback did not influence self-reported car habits, intention, and awareness, suggesting that personalized feedback may not be a one-size-fits-all solution to change travel habits.