Dienst van SURF
© 2025 SURF
With the rise of the number of electric vehicles, the installment of public charging infrastructure is becoming more prominent. In urban areas in which EV users rely on on-street parking facilities, the demand for public charging stations is high. Cities take on the role of implementing public charging infrastructure and are looking for efficient roll-out strategies. Municipalities generally reserve the parking spots next to charging stations to ensure their availability. Underutilization of these charging stations leads to increased parking pressure, especially during peak hours. The city of The Hague has therefore implemented daytime reservation of parking spots next to charging stations. These parking spots are exclusively available between 10:00 and 19:00 for electric vehicles and are accessible for other vehicles beyond these times. This paper uses a large dataset with information on nearly 40.000 charging sessions to analyze the implementation of the abovementioned scheme. An unique natural experiment was created in which charging stations within areas of similar parking pressure did or did not have this scheme implemented. Results show that implemented daytime charging 10-19 can restrict EV owners in using the charging station at times when they need it. An extension of daytime charging to 10:00-22:00 proves to reduce the hurdle for EV drivers as only 3% of charging sessions take place beyond this time. The policy still has the potential to relieve parking pressure. The paper contributes to the knowledge of innovative measures to stimulate the optimized rollout and usage of charging infrastructure.
The Vulkan real estate site in Oslo is owned by Aspelin Ramm, and includes one of the largest parking garages used for EV charging in Europe. EV charging (both AC and DC) is managed for now predominately for costs reasons but also with relevance at further EV penetration level in this car parking location (mixed EV and ICE vehicles). This neighbourhood scale SEEV4-City operational pilot (OP) has 50 22 kW flexible AC chargers with two sockets each and two DC chargers of 50 kW with both ChaDeMo and CCS outlets. All EV chargers now have a smart control (SC) and Vehicle-to-Grid (V2G) functionality (though the latter may not be in place fully for DC chargers, as they may not be fully connected to the remote back-office system of the EV charging systems operator). A Lithium-ion Battery Energy Stationary Storage System (BESS) with a capacity of 50 kWh is pre-programmed to reduce the energy power peaks of the electric vehicle (EV) charging infrastructure and charges at other times from the central grid (which has a generation mix of 98% from hydro-electric power, and in the region covering Oslo also 1% from wind). The inverter used in the BESS is rated at 50 kW, and is also controlled to perform phase balancing of the 3-phase supply system.
Receiving the first “Rijbewijs” is always an exciting moment for any teenager, but, this also comes with considerable risks. In the Netherlands, the fatality rate of young novice drivers is five times higher than that of drivers between the ages of 30 and 59 years. These risks are mainly because of age-related factors and lack of experience which manifests in inadequate higher-order skills required for hazard perception and successful interventions to react to risks on the road. Although risk assessment and driving attitude is included in the drivers’ training and examination process, the accident statistics show that it only has limited influence on the development factors such as attitudes, motivations, lifestyles, self-assessment and risk acceptance that play a significant role in post-licensing driving. This negatively impacts traffic safety. “How could novice drivers receive critical feedback on their driving behaviour and traffic safety? ” is, therefore, an important question. Due to major advancements in domains such as ICT, sensors, big data, and Artificial Intelligence (AI), in-vehicle data is being extensively used for monitoring driver behaviour, driving style identification and driver modelling. However, use of such techniques in pre-license driver training and assessment has not been extensively explored. EIDETIC aims at developing a novel approach by fusing multiple data sources such as in-vehicle sensors/data (to trace the vehicle trajectory), eye-tracking glasses (to monitor viewing behaviour) and cameras (to monitor the surroundings) for providing quantifiable and understandable feedback to novice drivers. Furthermore, this new knowledge could also support driving instructors and examiners in ensuring safe drivers. This project will also generate necessary knowledge that would serve as a foundation for facilitating the transition to the training and assessment for drivers of automated vehicles.
In the coming decades, a substantial number of electric vehicle (EV) chargers need to be installed. The Dutch Climate Accord, accordingly, urges for preparation of regional-scale spatial programs with focus on transport infrastructure for three major metropolitan regions among them Amsterdam Metropolitan Area (AMA). Spatial allocation of EV chargers could be approached at two different spatial scales. At the metropolitan scale, given the inter-regional flow of cars, the EV chargers of one neighbourhood could serve visitors from other neighbourhoods during days. At the neighbourhood scale, EV chargers need to be allocated as close as possible to electricity substations, and within a walkable distance from the final destination of EV drivers during days and nights, i.e. amenities, jobs, and dwellings. This study aims to bridge the gap in the previous studies, that is dealing with only of the two scales, by conducting a two-phase study on EV infrastructure. At the first phase of the study, the necessary number of new EV chargers in 353 4-digit postcodes of AMA will be calculated. On the basis of the findings of the Phase 1, as a case study, EV chargers will be allocated at the candidate street parking locations in the Amsterdam West borough. The methods of the study are Mixed-integer nonlinear programming, accessibility and street pattern analysis. The study will be conducted on the basis of data of regional scale travel behaviour survey and the location of dwellings, existing chargers, jobs, amenities, and electricity substations.
Stedelijke regio’s streven naar een duurzame mobiliteitstransitie. Deze ambitie staat echter op gespannen voet met het hoge autobezit- en autogebruik. De stormachtige introductie van lichte elektrische voertuigen, oftewel LEVs (denk aan e-scooters, e-steps, e-(cargo)bikes en micro-cars) leek een belangrijke ‘gamechanger’ te zijn. Deze LEVs zijn namelijk klein en efficiënt, zijn nagenoeg emissievrij, bieden mogelijkheden voor het verbeteren van het voor- en natransport van het openbaar vervoer (OV) en worden bovendien door hun gebruikers als prettig ervaren tijdens het reizen.Tot op heden maken LEVs deze beloften echter onvoldoende waar. Bij de introductie, thans met name in de vorm van deelsystemen, komen diverse uitdagingen aan het licht zoals: 1) verrommeling en overlast door verkeerd gepareerde LEVs, 2) ongewenste substitutie van loop-, fiets- en OV-verplaatsingen en beperkte impact op autogebruik en 3) en zorgen over de verkeersveiligheid en beleving, met name op de (al steeds drukker wordende) fietsinfrastructuur in Nederland. Deze problemen komen mede voort uit de snelle introductie waardoor gemeenten achter de feiten aanliepen en geen gericht beleid konden voeren. Langzaam komen we nu in een periode van stabilisatie en regulering maar een doorontwikkeling naar pro-actief LEV beleid is nodig om de potentie van LEVs voor de mobiliteitstransitie te ondersteunen. Het LEVERAGE-consortium, bestaande uit sterke partners uit de triple helix, gaat daarom aan de slag met deze vraagstukken. De centrale onderzoeksvraag is:Wat is de potentie van LEVs voor de mobiliteitstransitie naar bereikbare, duurzame, verkeersveilige, inclusieve en leefbare stedelijke regio’s en hoe kan deze optimaal worden benut door een betere integratie van LEVs in het mobiliteitssysteem en het mobiliteitsbeleid en door een effectieve governance van de samenwerking tussen publieke en private stakeholders?Om deze vraag te beantwoorden heeft het consortium een ambitieus en innovatieve onderzoeksopzet gedefinieerd waarbij veel nadruk wordt gelegd op de disseminatie en exploitatie van kennis in de beleidspraktijk.Collaborative partnersProvincie Noord-Brabant, Metropoolregio Arnhem-Nijmegen, Gemeente Eindhoven, Gemeente Breda, Gemeente Arnhem, Ministerie I&W, Rijkswaterstaat, Arriva, PON, Check, Citysteps, Cenex, TIER, We-all-Wheel, Fleet investment, Goudappel, Kennisinstellingen en netwerkorganisaties, HAN, TU/e, CROW, Connekt, POLIS, SWOV.