Dienst van SURF
© 2025 SURF
STUDY DESIGN: Cross-sectional study.OBJECTIVES: This study: (1) investigated the accuracy of bioelectrical impedance analysis (BIA) and skinfold thickness relative to dual-energy X-ray absorptiometry (DXA) in the assessment of body composition in people with spinal cord injury (SCI), and whether sex and lesion characteristics affect the accuracy, (2) developed new prediction equations to estimate fat free mass (FFM) and percentage fat mass (FM%) in a general SCI population using BIA and skinfolds outcomes.SETTING: University, the Netherlands.METHODS: Fifty participants with SCI (19 females; median time since injury: 15 years) were tested by DXA, single-frequency BIA (SF-BIA), segmental multi-frequency BIA (segmental MF-BIA), and anthropometry (height, body mass, calf circumference, and skinfold thickness) during a visit. Personal and lesion characteristics were registered.RESULTS: Compared to DXA, SF-BIA showed the smallest mean difference in estimating FM%, but with large limits of agreement (mean difference = -2.2%; limits of agreement: -12.8 to 8.3%). BIA and skinfold thickness tended to show a better estimation of FM% in females, participants with tetraplegia, or with motor incomplete injury. New equations for predicting FFM and FM% were developed with good explained variances (FFM: R2 = 0.94; FM%: R2 = 0.66).CONCLUSIONS: None of the measurement techniques accurately estimated FM% because of the wide individual variation and, therefore, should be used with caution. The accuracy of the techniques differed in different subgroups. The newly developed equations for predicting FFM and FM% should be cross-validated in future studies.
In het WHEELS-project wordt de eerste leefstijlapp voor rolstoelgebruikers met een dwarslaesie of beenamputatie ontwikkeld. Doel is dat zij ook ná de revalidatiefase kunnen werken aan hun vitaliteit en een gezonde leefstijl. In dit artikel wordt beschreven hoe de app in 6 stappen is ontwikkeld en worden de eerste resultaten van een gebruikersstudie samengevat.
LINK
The objective of this study is to investigate the heart rate (HR) accuracy measured at the wrist with the photoplethysmography (PPG) technique with a Fitbit Charge 2 (Fitbit Inc) in wheelchair users with spinal cord injury, how the activity intensity affects the HR accuracy, and whether this HR accuracy is affected by lesion level.
MULTIFILE