Dienst van SURF
© 2025 SURF
Objective: To predict mortality by disability in a sample of 479 Dutch community-dwelling people aged 75 years or older. Methods: A longitudinal study was carried out using a follow-up of seven years. The Groningen Activity Restriction Scale (GARS), a self-reported questionnaire with good psychometric properties, was used for data collection about total disability, disability in activities in daily living (ADL) and disability in instrumental activities in daily living (IADL). The mortality dates were provided by the municipality of Roosendaal (a city in the Netherlands). For analyses of survival, we used Kaplan–Meier analyses and Cox regression analyses to calculate hazard ratios (HR) with 95% confidence intervals (CI). Results: All three disability variables (total, ADL and IADL) predicted mortality, unadjusted and adjusted for age and gender. The unadjusted HRs for total, ADL and IADL disability were 1.054 (95%-CI: [1.039;1.069]), 1.091 (95%-CI: [1.062;1.121]) and 1.106 (95%-CI: [1.077;1.135]) with p-values <0.001, respectively. The AUCs were <0.7, ranging from 0.630 (ADL) to 0.668 (IADL). Multivariate analyses including all 18 disability items revealed that only “Do the shopping” predicted mortality. In addition, multivariate analyses focusing on 11 ADL items and 7 IADL items separately showed that only the ADL item “Get around in the house” and the IADL item “Do the shopping” significantly predicted mortality. Conclusion: Disability predicted mortality in a seven years follow-up among Dutch community-dwelling older people. It is important that healthcare professionals are aware of disability at early stages, so they can intervene swiftly, efficiently and effectively, to maintain or enhance the quality of life of older people.
MULTIFILE
By having a healthy and happy social life, social needs are fulfilled. When social needs are not fulfilled, loneliness and social isolation can occur, which have negative consequences for one’s physical and mental health. Social technology, technology that enables social interaction, can be a resource to fulfil the social needs of older people. In this study, we aimed to learn what role social technology plays in the social life of older people. We held 15 interviews with people aged over 70 who regularly use some form of social technology. Our results indicate that social technology plays different roles in the lives of older people. It strengthens the existing social relationships and social structures. It also brings depth and fun to the social contacts of older people and in this way, enriches their social lives. Social technology also gives a sense of safety and peace of mind to the older people themselves but also to their network members. However, there are barriers in the use of social technology. The older people struggled with using social technology and feel that social technology sometimes stands in the way of real human contact. In supporting and facilitating people’s relationship with others, a community and society, technology helps fulfil older people’s need for connectedness, meaningfulness and independence. However, the relationship with independence is ambiguous. Their life experience gives older people a thoughtful way of looking at social technology and the role it plays in their lives
The global agenda to move societies towards a more sustainable course of development also affects the lives of older people in our ageing populations. Therefore, it is important to understand the drivers, intentions and behaviours concerning sustainability among older adults. The aim of this study is to translate and cross-culturally validate an existing instrument (SustainABLE-16 Questionnaire), developed in the Netherlands, which measures how older people view the theme of environmental sustainability in their daily lives, for use in Romania, Poland, North Macedonia and Israel. The SustainABLE-16 covers three domains: 1) Pro-environmental behaviours; 2) Financial position; and 3) Beliefs. The scale was translated in Romanian, Polish, Macedonian, Albanian and Hebrew. Its 16 items were appraised for relevance by older people and experts in the field. A total of 2299 older people, including the original Dutch respondents, were included for the assessment of the level of measurement invariance across six languages, spoken in five countries. As the initial validation of the SustainABLE-16 did not meet internationally-recognised fit requirements, the shorter SustainABLE-8 was validated instead. This instrument proved valid for use in all participating countries (configural validity). Subsequently, increasingly constrained structural equation models were applied to test their fit with the data, ensuring that the fit did not deteriorate. The test results of measurement invariance across the countries indicated that items were stable, achieving partial scalar invariance, with five items demonstrating full scalar invariance. The shorter SustainABLE-8 functions uniformly across all language groups and can, therefore, be used to evaluate sustainable practices among older people. A better understanding of the drivers and practices among older citizens across Europe could, in turn, feed into more fitting public policies on sustainability in the built environment.
MULTIFILE
Due to societal developments, like the introduction of the ‘civil society’, policy stimulating longer living at home and the separation of housing and care, the housing situation of older citizens is a relevant and pressing issue for housing-, governance- and care organizations. The current situation of living with care already benefits from technological advancement. The wide application of technology especially in care homes brings the emergence of a new source of information that becomes invaluable in order to understand how the smart urban environment affects the health of older people. The goal of this proposal is to develop an approach for designing smart neighborhoods, in order to assist and engage older adults living there. This approach will be applied to a neighborhood in Aalst-Waalre which will be developed into a living lab. The research will involve: (1) Insight into social-spatial factors underlying a smart neighborhood; (2) Identifying governance and organizational context; (3) Identifying needs and preferences of the (future) inhabitant; (4) Matching needs & preferences to potential socio-techno-spatial solutions. A mixed methods approach fusing quantitative and qualitative methods towards understanding the impacts of smart environment will be investigated. After 12 months, employing several concepts of urban computing, such as pattern recognition and predictive modelling , using the focus groups from the different organizations as well as primary end-users, and exploring how physiological data can be embedded in data-driven strategies for the enhancement of active ageing in this neighborhood will result in design solutions and strategies for a more care-friendly neighborhood.
Everyone has the right to participate in society to the best of their ability. This right also applies to people with a visual impairment, in combination with a severe or profound intellectual and possibly motor disability (VISPIMD). However, due to their limitations, for their participation these people are often highly dependent on those around them, such as family members andhealthcare professionals. They determine how people with VISPIMD participate and to what extent. To optimize this support, they must have a good understanding of what people with disabilities can still do with their remaining vision.It is currently difficult to gain insight into the visual abilities of people with disabilities, especially those with VISPIMD. As a professional said, "Everything we can think of or develop to assess the functional vision of this vulnerable group will help improve our understanding and thus our ability to support them. Now, we are more or less guessing about what they can see.Moreover, what little we know about their vision is hard to communicate to other professionals”. Therefore, there is a need for methods that can provide insight into the functional vision of people with VISPIMD, in order to predict their options in daily life situations. This is crucial knowledge to ensure that these people can participate in society to their fullest extent.What makes it so difficult to get this insight at the moment? Visual impairments can be caused by a range of eye or brain disorders and can manifest in various ways. While we understand fairly well how low vision affects a person's abilities on relatively simple visual tasks, it is much more difficult to predict this in more complex dynamic everyday situations such asfinding your way or moving around during daily activities. This is because, among other things, conventional ophthalmic tests provide little information about what people can do with their remaining vision in everyday life (i.e., their functional vision).An additional problem in assessing vision in people with intellectual disabilities is that many conventional tests are difficult to perform or are too fatiguing, resulting in either no or the wrong information. In addition to their visual impairment, there is also a very serious intellectual disability (possibly combined with a motor impairment), which makes it even more complex to assesstheir functional vision. Due to the interplay between their visual, intellectual, and motor disabilities, it is almost impossible to determine whether persons are unable to perform an activity because they do not see it, do not notice it, do not understand it, cannot communicate about it, or are not able to move their head towards the stimulus due to motor disabilities.Although an expert professional can make a reasonable estimate of the functional possibilities through long-term and careful observation, the time and correct measurement data are usually lacking to find out the required information. So far, it is insufficiently clear what people with VZEVMB provoke to see and what they see exactly.Our goal with this project is to improve the understanding of the visual capabilities of people with VISPIMD. This then makes it possible to also improve the support for participation of the target group. We want to achieve this goal by developing and, in pilot form, testing a new combination of measurement and analysis methods - primarily based on eye movement registration -to determine the functional vision of people with VISPIMD. Our goal is to systematically determine what someone is responding to (“what”), where it may be (“where”), and how much time that response will take (“when”). When developing methods, we take the possibilities and preferences of the person in question as a starting point in relation to the technological possibilities.Because existing technological methods were originally developed for a different purpose, this partly requires adaptation to the possibilities of the target group.The concrete end product of our pilot will be a manual with an overview of available technological methods (as well as the methods themselves) for assessing functional vision, linked to the specific characteristics of the target group in the cognitive, motor area: 'Given that a client has this (estimated) combination of limitations (cognitive, motor and attention, time in whichsomeone can concentrate), the order of assessments is as follows:' followed by a description of the methods. We will also report on our findings in a workshop for professionals, a Dutch-language article and at least two scientific articles. This project is executed in the line: “I am seen; with all my strengths and limitations”. During the project, we closely collaborate with relevant stakeholders, i.e. the professionals with specific expertise working with the target group, family members of the persons with VISPIMD, and persons experiencing a visual impairment (‘experience experts’).
This project develops a European network for transdisciplinary innovation in artistic engagement as a catalyst for societal transformation, focusing on immersive art. It responds to the professionals in the field’s call for research into immersive art’s unique capacity to ‘move’ people through its multisensory, technosocial qualities towards collective change. The project brings together experts leading state-of-the-art research and practice in related fields with an aim to develop trajectories for artistic, methodological, and conceptual innovation for societal transformation. The nascent field of immersive art, including its potential impact on society, has been identified as a priority research area on all local-to-EU levels, but often suffers from the common (mis)perception as being technological spectacle prioritising entertainment values. Many practitioners create immersive art to enable novel forms of creative engagement to address societal issues and enact change, but have difficulty gaining recognition and support for this endeavour. A critical challenge is the lack of knowledge about how their predominantly sensuous and aesthetic experience actually lead to collective change, which remains unrecognised in the current systems of impact evaluation predicated on quantitative analysis. Recent psychological insights on awe as a profoundly transformative emotion signals a possibility to address this challenge, offering a new way to make sense of the transformational effect of directly interacting with such affective qualities of immersive art. In parallel, there is a renewed interest in the practice of cultural mediation, which brings together different stakeholders to facilitate negotiation towards collective change in diverse domains of civic life, often through creative engagements. Our project forms strategic grounds for transdisciplinary research at the intersection between these two developments. We bring together experts in immersive art, psychology, cultural mediation, digital humanities, and design across Europe to explore: How can awe-experiences be enacted in immersive art and be extended towards societal transformation?