Dienst van SURF
© 2025 SURF
OBJECTIVE: To examine the use of a submaximal exercise test in detecting change in fitness level after a physical training program, and to investigate the correlation of outcomes as measured submaximally or maximally.DESIGN: A prospective study in which exercise testing was performed before and after training intervention.SETTING: Academic and general hospital and rehabilitation center.PARTICIPANTS: Cancer survivors (N=147) (all cancer types, medical treatment completed > or =3 mo ago) attended a 12-week supervised exercise program.INTERVENTIONS: A 12-week training program including aerobic training, strength training, and group sport.MAIN OUTCOME MEASURES: Outcome measures were changes in peak oxygen uptake (Vo(2)peak) and peak power output (both determined during exhaustive exercise testing) and submaximal heart rate (determined during submaximal testing at a fixed workload).RESULTS: The Vo(2)peak and peak power output increased and the submaximal heart rate decreased significantly from baseline to postintervention (P<.001). Changes in submaximal heart rate were only weakly correlated with changes in Vo(2)peak and peak power output. Comparing the participants performing submaximal testing with a heart rate less than 140 beats per minute (bpm) versus the participants achieving a heart rate of 140 bpm or higher showed that changes in submaximal heart rate in the group cycling with moderate to high intensity (ie, heart rate > or =140 bpm) were clearly related to changes in VO(2)peak and peak power output.CONCLUSIONS: For the monitoring of training progress in daily clinical practice, changes in heart rate at a fixed submaximal workload that requires a heart rate greater than 140 bpm may serve as an alternative to an exhaustive exercise test.
OBJECTIVE: Measurement of exercise capacity is essential in patients with non-specific chronic low back pain (CLBP). However, the conventional Astrand bicycle test is not feasible in patients with a very poor aerobic capacity. Therefore the Astrand bicycles test for non-specific CLBP patients based on lean body mass (LBM) was developed as an alternative. The aim of this study was to evaluate reliability and validity of the LBM-based Astrand test.SUBJECTS: Twenty patients with non-specific CLBP and 20 healthy subjects were included for the reliability evaluation, and 19 healthy subjects for the validity evaluation.METHOD: Patients and healthy subjects were assessed twice. Intra class correlation (ICC), repeatability coefficient (RC) and the limits of agreement (LOA) were calculated as a measure of test re-tests reliability. An ICC >or= 0.75 was considered acceptable. Validity was tested by calculating ICC between the LBM-based Astrand test and a maximal bicycle test.RESULTS: The LBM-based Astrand test shows good reliability, reflected by an ICC >or= 0.91 and 95% of the 20 patients could perform the test. However, differences with the estimated true value reflected by the RC and natural variation reflected by the LOA were substantial in patients. Validity was good, reflected by ICC >or= 0.88.CONCLUSION: The present study shows that the LBM-based Astrand test is a reliable, valid, and feasible method for patients with non-specific CLBP. However, a substantial amount of variation should be taken into account in patients when interpreting the test results clinically.
BACKGROUND: It is generally unknown to what extent organ transplant recipients can be physically challenged. During an expedition to Mount Kilimanjaro, the tolerance for strenuous physical activity and high-altitude of organ transplant recipients after various types of transplantation was compared to non-transplanted controls.METHODS: Twelve organ transplant recipients were selected to participate (2 heart-, 2 lung-, 2 kidney-, 4 liver-, 1 allogeneic stem cell- and 1 small bowel-transplantation). Controls comprised the members of the medical team and accompanying family members (n = 14). During the climb, cardiopulmonary parameters and symptoms of acute mountain sickness were recorded twice daily. Capillary blood analyses were performed three times during the climb and once following return.RESULTS: Eleven of the transplant participants and all controls began the final ascent from 4700 meters and reached over 5000 meters. Eight transplant participants (73%) and thirteen controls (93%) reached the summit (5895m). Cardiopulmonary parameters and altitude sickness scores demonstrated no differences between transplant participants and controls. Signs of hyperventilation were more pronounced in transplant participants and adaptation to high-altitude was less effective, which was related to a decreased renal function. This resulted in reduced metabolic compensation.CONCLUSION: Overall, tolerance to strenuous physical activity and feasibility of a high-altitude expedition in carefully selected organ transplant recipients is comparable to non-transplanted controls.