Dienst van SURF
© 2025 SURF
Background: Particulate matter (PM) exposure is an important health risk, both in daily life and in the workplace. It causes respiratory and cardiovascular diseases and results in 800,000 premature deaths per year worldwide. In earlier research, we assessed workers’ information needs regarding workplace PM exposure, the properties and effects of PM, and the rationale behind various means of protection. We also concluded that workers do not always receive appropriate risk communication tools with regards to PM, and that their PM knowledge appears to be fragmented and incomplete. Methods: We considered several concepts for use as an educational material based on evaluation criteria: ease of use, costs, appropriateness for target audiences and goals, interactivity, implementation issues, novelty, and speed. We decided to develop an educational folder, which can be used to inform employees about the properties, effects and prevention methods concerning PM. Furthermore, we decided on a test setup of a more interactive way of visualisation of exposure to PM by means of exposimeters. For the development of the folder, we based the information needs on our earlier mental models-based research. We adjusted the folder based on the results of ten semi-structured interviews evaluating its usability. Results: The semi-structured interviews yielded commentaries and suggestions for further improvement, which resulted in a number of alterations to the folder. However, in most cases the folder was deemed satisfactory. Conclusion: Based on this study, the folder we developed is suitable for a larger-scale experiment and a practical test. Further research is needed to investigate the efficacy of the folder and the application of the exposimeter in a PM risk communication system.
The evolution of emerging technologies that use Radio Frequency Electromagnetic Field (RF-EMF) has increased the interest of the scientific community and society regarding the possible adverse effects on human health and the environment. This article provides NextGEM’s vision to assure safety for EU citizens when employing existing and future EMF-based telecommunication technologies. This is accomplished by generating relevant knowledge that ascertains appropriate prevention and control/actuation actions regarding RF-EMF exposure in residential, public, and occupational settings. Fulfilling this vision, NextGEM commits to the need for a healthy living and working environment under safe RF-EMF exposure conditions that can be trusted by people and be in line with the regulations and laws developed by public authorities. NextGEM provides a framework for generating health-relevant scientific knowledge and data on new scenarios of exposure to RF-EMF in multiple frequency bands and developing and validating tools for evidence-based risk assessment. Finally, NextGEM’s Innovation and Knowledge Hub (NIKH) will offer a standardized way for European regulatory authorities and the scientific community to store and assess project outcomes and provide access to findable, accessible, interoperable, and reusable (FAIR) data.
Background: Everyday exposure to radiofrequency electromagnetic fields (RF-EMF) emitted from wireless devices such as mobile phones and base stations, radio and television transmitters is ubiquitous. Some people attribute non-specific physical symptoms (NSPS) such as headache and fatigue to exposure to RF-EMF. Most previous laboratory studies or studies that analyzed populations at a group level did not find evidence of an association between RF-EMF exposure and NSPS. Objectives: We explored the association between exposure to RF-EMF in daily life and the occurrence of NSPS in individual self-declared electro hypersensitive persons using body worn exposimeters and electronic diaries. Methods: We selected seven individuals who attributed their NSPS to RF-EMF exposure. The level of and variability in personal RF-EMF exposure and NSPS were determined during a three-week period. Data were analyzed using timeseries analysis in which exposure as measured and recorded in the diary was correlated with NSPS. Results: We found statistically significant correlations between perceived and actual exposure to wireless internet (WiFi - rate of change and number of peaks above threshold) and base stations for mobile telecommunications (GSM+UMTS downlink, rate of change) and NSPS scores in four of the seven participants. In two persons a higher EMF exposure was associated with higher symptom scores, and in two other persons it was associated with lower scores. Remarkably, we found no significant correlations between NSPS and timeweighted average power density, the most commonly used exposure metric. Conclusions: RF-EMFexposure was associated either positively or negatively with NSP Sinsome but not all of the selected self-declared electro hypersensitive persons. https://doi.org/10.1016/j.envint.2018.08.064
MULTIFILE