Dienst van SURF
© 2025 SURF
This article deals with automatic object recognition. The goal is that in a certain grey-level image, possibly containing many objects, a certain object can be recognized and localized, based upon its shape. The assumption is that this shape has no special characteristics on which a dedicated recognition algorithm can be based (e.g. if we know that the object is circular, we could use a Hough transform or if we know that it is the only object with grey level 90, we can simply use thresholding). Our starting point is an object with a random shape. The image in which the object is searched is called the Search Image. A well known technique for this is Template Matching, which is described first.
We will demonstrate a prototype exergame aimed at the serious domain of elderly fitness. The exergame incorporates straightforward means to gesture recognition, and utilises a Kinect camera to obtain 2.5D sensory data of the human user.
Over the past few years a growing number of artists have critiqued the ubiquity of identity recognition technologies. Specifically, the use of these technologies by state security programs, tech-giants and multinational corporations has met with opposition and controversy. A popular form of resistance to recognition technology is sought in strategies of masking and camouflage. Zach Blas, Leo Selvaggio, Sterling Crispin and Adam Harvey are among a group of internationally acclaimed artists who have developed subversive anti-facial recognition masks that disrupt identification technologies. This paper examines the ontological underpinnings of these popular and widely exhibited mask projects. Over and against a binary understanding and criticism of identity recognition technology, I propose to take a relational turn to reimagine these technologies not as an object for our eyes, but as a relationship between living organisms and things. A relational perspective cuts through dualist and anthropocentric conceptions of recognition technology opening pathways to intersectional forms of resistance and critique. Moreover, if human-machine relationships are to be understood as coming into being in mutual dependency, if the boundaries between online and offline are always already blurred, if the human and the machine live intertwined lives and it is no longer clear where the one stops and the other starts, we need to revise our understanding of the self. A relational understanding of recognition technology moves away from a notion of the self as an isolated and demarcated entity in favour of an understanding of the self as relationally connected, embedded and interdependent. This could alter the way we relate to machines and multiplies the lines of flight we can take out of a culture of calculated settings.
GAMING HORIZONS is a multidisciplinary project that aims to expand the research and innovation agenda on serious gaming and gamification. The project is particularly interested in the use of games for learning and cultural development. Gamification - and gaming more broadly – are very important from a socio-economic point of view, but over the past few years they have been at the centre of critical and challenging debates, which highlighted issues such as gender and minority representation, and exploitative game mechanics. Our project’s key contention is that it is important for the European ICT community to engage with design trends and social themes that have affected profoundly the mainstream and ‘independent’ game development cultures over the past few years, especially because the boundaries between leisure and serious games are increasingly blurred. GAMING HORIZONS is a direct response to the official recognition by the H2020 programme of work that multidisciplinary research can help to advance the integration between Responsible Research and Innovation (RRI) and the Social Sciences and the Humanities (SSH). The project’s objective is to enable a higher uptake of socially responsible ICT-related research in relation to gaming. This objective will be achieved through a research-based exchange between communities of developers, policy makers, users and researchers. The methodology will involve innovative data collection activities and consultations with a range of stakeholders over a period of 14 months. We will interrogate the official ‘H2020 discourse’ on gamification – with a particular focus on ‘gamified learning’ - whilst engaging with experts, developers and critical commentators through interviews, events, workshops and systematic dialogue with an Advisory Board. Ultimately, GAMING HORIZONS will help identify future directions at the intersection of ethics, social research, and both the digital entertainment and serious games industries.EU FundingThe 14-month research project 'Gaming Horizons' was funded by the European Commission through the Horizon 2020 research and innovation programme.
The demand for mobile agents in industrial environments to perform various tasks is growing tremendously in recent years. However, changing environments, security considerations and robustness against failure are major persistent challenges autonomous agents have to face when operating alongside other mobile agents. Currently, such problems remain largely unsolved. Collaborative multi-platform Cyber- Physical-Systems (CPSs) in which different agents flexibly contribute with their relative equipment and capabilities forming a symbiotic network solving multiple objectives simultaneously are highly desirable. Our proposed SMART-AGENTS platform will enable flexibility and modularity providing multi-objective solutions, demonstrated in two industrial domains: logistics (cycle-counting in warehouses) and agriculture (pest and disease identification in greenhouses). Aerial vehicles are limited in their computational power due to weight limitations but offer large mobility to provide access to otherwise unreachable places and an “eagle eye” to inform about terrain, obstacles by taking pictures and videos. Specialized autonomous agents carrying optical sensors will enable disease classification and product recognition improving green- and warehouse productivity. Newly developed micro-electromechanical systems (MEMS) sensor arrays will create 3D flow-based images of surroundings even in dark and hazy conditions contributing to the multi-sensor system, including cameras, wireless signatures and magnetic field information shared among the symbiotic fleet. Integration of mobile systems, such as smart phones, which are not explicitly controlled, will provide valuable information about human as well as equipment movement in the environment by generating data from relative positioning sensors, such as wireless and magnetic signatures. Newly developed algorithms will enable robust autonomous navigation and control of the fleet in dynamic environments incorporating the multi-sensor data generated by the variety of mobile actors. The proposed SMART-AGENTS platform will use real-time 5G communication and edge computing providing new organizational structures to cope with scalability and integration of multiple devices/agents. It will enable a symbiosis of the complementary CPSs using a combination of equipment yielding efficiency and versatility of operation.