Dienst van SURF
© 2025 SURF
This article deals with automatic object recognition. The goal is that in a certain grey-level image, possibly containing many objects, a certain object can be recognized and localized, based upon its shape. The assumption is that this shape has no special characteristics on which a dedicated recognition algorithm can be based (e.g. if we know that the object is circular, we could use a Hough transform or if we know that it is the only object with grey level 90, we can simply use thresholding). Our starting point is an object with a random shape. The image in which the object is searched is called the Search Image. A well known technique for this is Template Matching, which is described first.
In mobile robotics, LASER scanners have a wide spectrum of indoor and outdoor applications, both in structured and unstructured environments, due to their accuracy and precision. Most works that use this sensor have their own data representation and their own case-specific modeling strategies, and no common formalism is adopted. To address this issue, this manuscript presents an analytical approach for the identification and localization of objects using 2D LiDARs. Our main contribution lies in formally defining LASER sensor measurements and their representation, the identification of objects, their main properties, and their location in a scene. We validate our proposal with experiments in generic semi-structured environments common in autonomous navigation, and we demonstrate its feasibility in multiple object detection and identification, strictly following its analytical representation. Finally, our proposal further encourages and facilitates the design, modeling, and implementation of other applications that use LASER scanners as a distance sensor.
In the past decade, particularly smaller drones have started to claim their share of the sky due to their potential applications in the civil sector as flying-eyes, noses, and very recently as flying hands. Network partners from various application domains: safety, Agro, Energy & logistic are curious about the next leap in this field, namely, collaborative Sky-workers. Their main practical question is essentially: “Can multiple small drones transport a large object over a high altitude together in outdoor applications?” The industrial partners, together with Saxion and RUG, will conduct feasibility study to investigate if it is possible to develop these collaborative Sky-workers and to identify which possibilities this new technology will offer. Design science research methodology, which focuses on solution-oriented applied research involving multiple iterations with rigorous evaluations, will be used to research the feasibility of the main technological building blocks. They are: • Accurate localization based on onboard sensors. • Safe and optimal interaction controller for collaborative aerial transport Within this project, the first proof-of-concepts will be developed. The results of this project will be used to expand the existing network and formulate a bigger project to address additional critical aspects in order to develop a complete framework for collaborative drones.