Dienst van SURF
© 2025 SURF
Staffing practices in long-term care lack a clear evidence base and often seem to be guided by opinions instead of evidence. While stakeholders believe intuitively that there is a positive relationship between staffing levels and quality in nursing homes, the research literature is contradictory (1). In this editorial we consider the evidence found in a literature study that we conducted for the Dutch Ministry of Health, Welfare and Sports (VWS). The aim of this study was to summarize all available evidence on the relationship between staffing and quality in nursing homes. Specifically, we focused on the quantity and the educational background of staff and quality in nursing homes. The literature study has contributed to the recent Dutch quality framework for nursing homes (Kwaliteitskader verpleeghuiszorg in Dutch) of the National Health Care Institute. This quality framework was published in January 2017 and provides norms – among other quality aspects – for nursing home staffing. As well as a description of the main findings of the literature study, we present implications for different stakeholders charged with staffing issues in nursing homes.
Purpose – In the domain of healthcare, both process efficiency and the quality of care can be improved through the use of dedicated pervasive technologies. Among these applications are so-called real-time location systems (RTLS). Such systems are designed to determine and monitor the location of assets and people in real time through the use of wireless sensor networks. Numerous commercially available RTLS are used in hospital settings. The nursing home is a relatively unexplored context for the application of RTLS and offers opportunities and challenges for future applications. The paper aims to discuss these issues. Design/methodology/approach – This paper sets out to provide an overview of general applications and technologies of RTLS. Thereafter, it describes the specific healthcare applications of RTLS, including asset tracking, patient tracking and personnel tracking. These overviews are followed by a forecast of the implementation of RTLS in nursing homes in terms of opportunities and challenges. Findings – By comparing the nursing home to the hospital, the RTLS applications for the nursing home context that are most promising are asset tracking of expensive goods owned by the nursing home in orderto facilitate workflow and maximise financial resources, and asset tracking of personal belongings that may get lost due to dementia. Originality/value – This paper is the first to provide an overview of potential application of RTLS technologies for nursing homes. The paper described a number of potential problem areas that can be addressed by RTLS. Published by Emerald Publishing Limited Original article: https://doi.org/10.1108/JET-11-2017-0046 For this paper Joost van Hoof received the Highly Recommended Award from Emerald Publishing Ltd. in October 2019: https://www.emeraldgrouppublishing.com/authors/literati/awards.htm?year=2019
MULTIFILE
Objective: To obtain insight into (a) the prevalence of nursing staff–experienced barriers regarding the promotion of functional activity among nursing home residents, and (b) the association between these barriers and nursing staff–perceived promotion of functional activity. Method: Barriers experienced by 368 nurses from 41 nursing homes in the Netherlands were measured with the MAastrIcht Nurses Activity INventory (MAINtAIN)-barriers; perceived promotion of functional activities was measured with the MAINtAIN-behaviors. Descriptive statistics and hierarchical linear regression analyses were performed. Results: Most often experienced barriers were staffing levels, capabilities of residents, and availability of resources. Barriers that were most strongly associated with the promotion of functional activity were communication within the team, (a lack of) referral to responsibilities, and care routines. Discussion: Barriers that are most often experienced among nursing staff are not necessarily the barriers that are most strongly associated with nursing staff–perceived promotion of functional activity.
To optimize patient care, it is vital to prevent infections in healthcare facilities. In this respect, the increasing prevalence of antibiotic-resistant bacterial strains threatens public healthcare. Current gold standard techniques are based on classical microbiological assays that are time consuming and need complex expensive lab environments. This limits their use for high throughput bacterial screening to perform optimal hygiene control. The infection prevention workers in hospitals and elderly nursing homes underline the urgency of a point-of-care tool that is able to detect bacterial loads on-site in a fast, precise and reliable manner while remaining with the available budgets. The aim of this proposal titled SURFSCAN is to develop a novel point-of-care tool for bacterial load screening on various surfaces throughout the daily routine of professionals in healthcare facilities. Given the expertise of the consortium partners, the point-of-care tool will be based on a biomimetic sensor combining surface imprinted polymers (SIPs), that act as synthetic bacterial receptors, with a thermal read-out strategy for detection. The functionality and performance of this biomimetic sensor has been shown in lab conditions and published in peer reviewed journals. Within this proposal, key elements will be optimized to translate the proof of principle concept into a complete clinical prototype for on-site application. These elements are essential for final implementation of the device as a screening and assessment tool for scanning bacterial loads on surfaces by hospital professionals. The research project offers a unique collaboration among different end-users (hospitals and SMEs), and knowledge institutions (Zuyd University of Applied Sciences, Fontys University of Applied Sciences and Maastricht Science Programme, IDEE-Maastricht University), which guarantees transfer of fundamental knowledge to the market and end-user needs.