Dienst van SURF
© 2025 SURF
From the article: Abstract: An overview of neural network architectures is presented. Some of these architectures have been created in recent years, whereas others originate from many decades ago. Apart from providing a practical tool for comparing deep learning models, the Neural Network Zoo also uncovers a taxonomy of network architectures, their chronology, and traces back lineages and inspirations for these neural information processing systems.
A considerable amount of literature has been published on Corporate Reputation, Branding and Brand Image. These studies are extensive and focus particularly on questionnaires and statistical analysis. Although extensive research has been carried out, no single study was found which attempted to predict corporate reputation performance based on data collected from media sources. To perform this task, a biLSTM Neural Network extended with attention mechanism was utilized. The advantages of this architecture are that it obtains excellent performance for NLP tasks. The state-of-the-art designed model achieves highly competitive results, F1 scores around 72%, accuracy of 92% and loss around 20%.
We present a novel architecture for an AI system that allows a priori knowledge to combine with deep learning. In traditional neural networks, all available data is pooled at the input layer. Our alternative neural network is constructed so that partial representations (invariants) are learned in the intermediate layers, which can then be combined with a priori knowledge or with other predictive analyses of the same data. This leads to smaller training datasets due to more efficient learning. In addition, because this architecture allows inclusion of a priori knowledge and interpretable predictive models, the interpretability of the entire system increases while the data can still be used in a black box neural network. Our system makes use of networks of neurons rather than single neurons to enable the representation of approximations (invariants) of the output.
LINK