Dienst van SURF
© 2025 SURF
This article explores the applicability of smart grid concepts to the Dutch gas network by reflecting on the experience of the electricity sector.
This study aims to evaluate the effect in the energy network of a big shared of decarbonise vehicles (NGV and EV) based on car-use profiles of current conventional and electric vehicles in the city of Groningen. Charging profiles were developed within CBS dataset of mobility and transport, and the electric charging profiles provided by E-Laad.
In order to gain a more mature share in the future energy supply, green gas supply chains face some interesting challenges. In this thesis green gas supply chains, based on codigestion of cow manure and maize, are considered. The produced biogas is upgraded to natural gas quality and injected into the existing distribution gas grid and thus replacing natural gas. Literature research showed that relatively much attention has been paid up to now to elements of such supply chains. Research into digestion technology, agricultural aspects of (energy) crops and logistics of biomass are examples of this. This knowledge is indispensable, but how this knowledge should be combined to help understand how future green gas systems may look like, remains a white spot in the current knowledge. This thesis is an effort to fill this gap. A practical but sound way of modeling green gassupply chains was developed, taking costs and sustainability criteria into account. The way such supply chains can deal with season dependent gas demand was also investigated. This research was further expanded into a geographical model to simulate several degrees of natural gas replacement by green gas. Finally, ways to optimize green gas supply chains in terms of energy efficiency and greenhouse gas reduction were explored.