Dienst van SURF
© 2025 SURF
© 2025 SURF
PowerPoint presentation used during a lecture of Peter van der Maas, professor Sustainable Water Systems at Van Hall Larenstein, on October 8, 2019 at the Wetsus Congress 2019 in Leeuwarden.
MULTIFILE
Urban delta areas require innovative and adaptive urban developments to face problems related with land scarcity and impacts of climate change and flooding. Floating structures offer the flexibility and multi-functionality required to efficiently face these challenges and demands. The impact of these structures on the environment, however, is currently unknown and research on this topic is often disregarded. This knowledge gap creates a difficulty for water authorities and municipalities to create a policy framework, and to regulate and facilitate the development of new projects.Monitoring the effects of floating structures on water quality and ecology has been difficult until now because of the poor accessibility of the water body underneath the structures. In this work, a remote controlled underwater drone equipped with water quality sensors and a video camera was used to monitor dissolved oxygen near and under floating structures. The collected data showed that most water quality parameters remain at acceptable levels, indicating that the current small scale floating structures do not have a significant influence on water quality. The underwater footage revealed the existence of a dynamic and diverse aquatic habitat in the vicinity of these structures, showing that floating structures can have a positive effect on the aquatic environment. Future floating structures projects therefore should be encouraged to proceed.
Large floating projects have the potential to overcome the challenge of land scarcity in urban areas and offer opportunities for energy and food production, or even for creating sustainable living environments. However, they influence the physical, chemical, biological and ecological characteristics of water bodies. The interaction of the floating platforms affect multiple complex aquatic processes, and the potential (negative/positive) effects are not yet fully understood. Managing entities currently struggle with lack of data and knowledge that can support adequate legislation to regulate future projects.In the Netherlands the development of small scale floating projects is already present for some years (e.g. floating houses, restaurants, houseboats), and more recently several large scale floating photovoltaic plants (FPV) have been realized. Several floating constructions in the Netherlands were considered as case-studies for a data-collection campaign.To obtain data and images from underneath floating buildings, underwater drones were equipped with cameras and sensors. The drones were used in multiple locations to scan for differences in concentrations of basic water quality parameters (e.g. dissolved oxygen, electrical conductivity, algae, light intensity) from underneath/near the floating structures, which were then compared with data from locations far from the influence of the buildings. Continuous data was also collected over several days using multi-parameter water quality sensors permanently installed under floating structures.
Biomimicry education is grounded in a set of natural design principles common to every known lifeform on Earth. These Life’s Principles (LPs) (cc Biomimicry 3.8), provide guidelines for emulating sustainable strategies that are field-tested over nearly four billion years of evolution. This study evaluates an exercise for teaching LPs to interdisciplinary students at three universities, Arizona State University (ASU) in Phoenix, Arizona (USA), College of Charleston (CofC) in Charleston, South Carolina (USA) and The Hague University of Applied Sciences (THUAS) in The Hague (The Netherlands) during the spring 2021 semester. Students researched examples of both biological organisms and human designs exhibiting the LPs. We gauged the effectiveness of the exercise through a common rubric and a survey to discover ways to improve instruction and student understanding. Increased student success was found to be directly linked to introducing the LPs with illustrative examples, assigning an active search for examples as part of the exercise, and utilizing direct assessment feedback loops. Requiring students to highlight the specific terms of the LP sub-principles in each example is a suggested improvement to the instructions and rubric. An iterative, face-to-face, discussion-based teaching and learning approach helps overcome minor misunderstandings. Reiterating the LPs throughout the semester with opportunities for application will highlight the potential for incorporating LPs into students’ future sustainable design process. Stevens LL, Fehler M, Bidwell D, Singhal A, Baumeister D. Building from the Bottom Up: A Closer Look into the Teaching and Learning of Life’s Principles in Biomimicry Design Thinking Courses. Biomimetics. 2022; 7(1):25. https://doi.org/10.3390/biomimetics7010025
Inland surface water systems are characterized by constant variations in time and space. The increased pressure, of natural or anthropic origin, as a consequence of climate change, population growth and urban development accentuate these changes. Effective water management is key to achieve European waterquality and ecological goals. This is only possible with accurate and extensive knowledge of water systems.The collection of data using platforms such as underwater, water surface or aerial drones is gradually becoming more common and appraised. However, these are not yet standard practice in watermanagement. This work addresses the receptivity of water managers in the Netherlands towards underwater drone technology:· Listing and testing of suitable applications;· Comparison between data requirements of water managers (e.g. legislation) and data thatunderwater drones can provide;· Identification of features should R&D projects focus to increase the interest of the water sector.
There is an urgency for developing methods that are capable of monitoring watersystems that are fast changing due to climate change and increase of anthropogenic pressure. Updated and real-time detailed data is necessary to support water and soil management strategies. This study evaluates the implementations of novel techniques in different socio-economic settings. Sensors and cameras were installed in mobile platforms (including boats and underwater drones), and deployed to assess spatial data variability. Environmental scans were performed at multiple locations with different water systems in The Netherlands, Indonesia and Denmark. Results from themultiple methods (sensor, cameras) provided new insights into spatial variation of water quality, contrasting with traditional point sampling. Feedback from waterauthorities and other stakeholders indicate that collected data can be used tosupport management actions, and that such increasingly accessible technologiescontribute to creating awareness to water related issues.
The synthesis of total cellular proteins in Escherichia coli K12 was studied in batch culture following exposure of cells to low concentrations of monochlorophenol, pentachlorophenol and cadmium chloride. Changes in protein patterns were identified after pulse-chase labelling of proteins with [35S]methionine and subsequent two-dimensional gel electrophoresis (2D-PAGE). We demonstrated that besides the induction of some stress proteins, also a transient decrease in the rate of synthesis of other proteins occurred. Two of these proteins were identified as OmpF and aspartate transcarbamoylase (ATCase). Their transient repression appeared to be a general response to stress elicited by different pollutants and may therefore be used as a general and sensitive early warning system for pollutant stress.