Dienst van SURF
© 2025 SURF
This is the editorial paper for the virtual special issue “Using Q methodology in higher education: Opportunities and challenges”, consisting of nine original research studies from different international contexts. In addition to presenting novel findings, contributors were invited to discuss the following two questions at the center of the special issue call: In what sense has Q methodology served as a fitting approach to investigate subjectivity in higher education? What methodological opportunities and challenges arise with Q methodology in higher education settings? This editorial provides an overview and discussion of the various justifications mentioned for Q methodology. Furthermore, it collates the opportunities and challenges contributors discuss in relation to their studies using this almost 90-year-old methodological approach. The editorial paper concludes with recommendations for future Q methodological studies in higher education and beyond.
MULTIFILE
The methodology should be a uniform approach that also is flexible enough to accommodate all combinations that make up the different solutions in 6 OPs. For KPIs A and B this required the use of sub-KPIs to differentiate the effects of each (individual and combination of) implemented solutions and prevent double counting of results. This approach also helped to ensure that all 6 OPs use a common way and scope to calculate the various results. Consequently, this allowed the project to capture the results per OP and the total project in one ‘measurement results’ template. The template is used in both the individual OP reports and the ‘KPI Results: Baseline & Final results’ report where all results are accumulated; each instance providing a clear overview of what is achieved. This report outlines the details of the methodology used and applied. It is not just meant to provide a clarification of the results of the project, but is also meant to allow others who are embarking on adopting similar solutions for the purpose of CO2 reduction, becoming more energy autonomous or avoid grid stress or investments to learn about and possibly use the same methodology.
In order to study education and development, researchers can choose among a plethora of methods. The Merriam-Webster dictionary tells us that “method” means: a procedure or process for attaining an object …such as …a systematic procedure, technique, or mode of inquiry employed by or proper to a particular discipline or art “ or “a way, technique, or process of or for doing something”, or “a body of skills or techniques”. Methods proper to the scientific study of education and development cover a very broad range of procedures, ranging from how to formulate and ask questions, how to design studies for answering such questions, how to perform such studies in real-world contexts, how to extract data and how to process them, how to relate processed data to answers on questions, how to communicate such questions and answers, and how to apply them to real world activities aimed at promoting education and development. This body of methods is customarily termed “methodology”, which is a concept that includes the methods themselves but also our understanding of their relationships and their rational and scientific justification. Let us call this body of methods and the justifications “Integrative methodology”. Researchers often tend to see this integrative methodology as a more or less autonomous set of good practice prescriptions. This view is consistent with practices of academic training in which methodology courses are offered separate from courses on disciplinarian contents, e.g. courses on development or educational science. As a consequence of this autonomy oriented view of methodology, scientific questions regarding development and education tend to be framed in terms of the available or habitual methods. For instance, we readily transform or translate concrete questions about the influence of some particular educational intervention in terms of a statistically significant difference between 2 representative samples that systematically differ in only one variable or feature of interest, which, in this case, is the intervention. Almost every word in this translation carries the heavy burden of methodological principles, concepts and presuppositions: “statistically”, “significant”, “difference”, “representative”, “sample”, “systematically”, “variable”, and “intervention”. And all these principles, concepts and presuppositions are taken from this autonomous body of integrative methodology, which forms our indisputable cookbook of good practices, outside of which no good — scientific — practices exist. The answers to questions that are shaped by this independent body of methodology will then contribute to existing theories of development and education. In this sense, it is the (allegedly) independent methodology that informs theory.In this chapter, we will move against this current practice and make the — apparently deeply obvious — claim that it must be theory that informs the questions and the way we shall answer these questions. That is, it must be theory – that is, your body of justified knowledge about a particular phenomenon – that informs, influences and determines methodology, that is, the whole of methods, procedures and instruments that you use to study that phenomenon. . The sort of theory that should inform integrative methodology must be an integrative theory, that is to say a theory consisting of a consistent set of general principles and concepts shaping the domains of inquiry, which in this particular case are the related domains of development and education
Digital transformation has been recognized for its potential to contribute to sustainability goals. It requires companies to develop their Data Analytic Capability (DAC), defined as their ability to collect, manage and analyze data effectively. Despite the governmental efforts to promote digitalization, there seems to be a knowledge gap on how to proceed, with 37% of Dutch SMEs reporting a lack of knowledge, and 33% reporting a lack of support in developing DAC. Participants in the interviews that we organized preparing this proposal indicated a need for guidance on how to develop DAC within their organization given their unique context (e.g. age and experience of the workforce, presence of legacy systems, high daily workload, lack of knowledge of digitalization). While a lot of attention has been given to the technological aspects of DAC, the people, process, and organizational culture aspects are as important, requiring a comprehensive approach and thus a bundling of knowledge from different expertise. Therefore, the objective of this KIEM proposal is to identify organizational enablers and inhibitors of DAC through a series of interviews and case studies, and use these to formulate a preliminary roadmap to DAC. From a structure perspective, the objective of the KIEM proposal will be to explore and solidify the partnership between Breda University of Applied Sciences (BUas), Avans University of Applied Sciences (Avans), Logistics Community Brabant (LCB), van Berkel Logistics BV, Smink Group BV, and iValueImprovement BV. This partnership will be used to develop the preliminary roadmap and pre-test it using action methodology. The action research protocol and preliminary roadmap thereby developed in this KIEM project will form the basis for a subsequent RAAK proposal.
The pace of technology advancements continues to accelerate, and impacts the nature of systems solutions along with significant effects on involved stakeholders and society. Design and engineering practices with tools and perspectives, need therefore to evolve in accordance to the developments that complex, sociotechnical innovation challenges pose. There is a need for engineers and designers that can utilize fitting methods and tools to fulfill the role of a changemaker. Recognized successful practices include interdisciplinary methods that allow for effective and better contextualized participatory design approaches. However, preliminary research identified challenges in understanding what makes a specific method effective and successfully contextualized in practice, and what key competences are needed for involved designers and engineers to understand and adopt these interdisciplinary methods. In this proposal, case study research is proposed with practitioners to gain insight into what are the key enabling factors for effective interdisciplinary participatory design methods and tools in the specific context of sociotechnical innovation. The involved companies are operating at the intersection between design, technology and societal impact, employing experts who can be considered changemakers, since they are in the lead of creative processes that bring together diverse groups of stakeholders in the process of sociotechnical innovation. A methodology will be developed to capture best practices and understand what makes the deployed methods effective. This methodology and a set of design guidelines for effective interdisciplinary participatory design will be delivered. In turn this will serve as a starting point for a larger design science research project, in which an educational toolkit for effective participatory design for socio-technical innovation will be designed.
Physical rehabilitation programs revolve around the repetitive execution of exercises since it has been proven to lead to better rehabilitation results. Although beginning the motor (re)learning process early is paramount to obtain good recovery outcomes, patients do not normally see/experience any short-term improvement, which has a toll on their motivation. Therefore, patients find it difficult to stay engaged in seemingly mundane exercises, not only in terms of adhering to the rehabilitation program, but also in terms of proper execution of the movements. One way in which this motivation problem has been tackled is to employ games in the rehabilitation process. These games are designed to reward patients for performing the exercises correctly or regularly. The rewards can take many forms, for instance providing an experience that is engaging (fun), one that is aesthetically pleasing (appealing visual and aural feedback), or one that employs gamification elements such as points, badges, or achievements. However, even though some of these serious game systems are designed together with physiotherapists and with the patients’ needs in mind, many of them end up not being used consistently during physical rehabilitation past the first few sessions (i.e. novelty effect). Thus, in this project, we aim to 1) Identify, by means of literature reviews, focus groups, and interviews with the involved stakeholders, why this is happening, 2) Develop a set of guidelines for the successful deployment of serious games for rehabilitation, and 3) Develop an initial implementation process and ideas for potential serious games. In a follow-up application, we intend to build on this knowledge and apply it in the design of a (set of) serious game for rehabilitation to be deployed at one of the partners centers and conduct a longitudinal evaluation to measure the success of the application of the deployment guidelines.