This publication gives a different take on energy and energy transition. Energy goes beyond technology. Energy systems are about people: embedded in political orders and cultural institutions, shaped by social consumers and advocacy coalitions, and interconnected with changing parameters and new local and global markets. An overview and explanation of the three end states have been extracted from the original publication and appear in the first chapter. The second chapter consists of an analysis exploring key drivers of change until 2050, giving special attention to the role of international politics, social dynamics and high-impact ideas. The third chapter explores a case study of Power to Gas to illustrate how the development of new technologies could be shaped by regulatory systems, advocacy coalitions and other functions identified in the ‘technology innovation systems’ model. The fourth chapter explores the case of Energy Valley to understand how local or regional energy systems respond to drivers of change, based on their contextual factors and systems dynamics.
This publication gives a different take on energy and energy transition. Energy goes beyond technology. Energy systems are about people: embedded in political orders and cultural institutions, shaped by social consumers and advocacy coalitions, and interconnected with changing parameters and new local and global markets. An overview and explanation of the three end states have been extracted from the original publication and appear in the first chapter. The second chapter consists of an analysis exploring key drivers of change until 2050, giving special attention to the role of international politics, social dynamics and high-impact ideas. The third chapter explores a case study of Power to Gas to illustrate how the development of new technologies could be shaped by regulatory systems, advocacy coalitions and other functions identified in the ‘technology innovation systems’ model. The fourth chapter explores the case of Energy Valley to understand how local or regional energy systems respond to drivers of change, based on their contextual factors and systems dynamics.
In order to gain a more mature share in the future energy supply, green gas supply chains face some interesting challenges. In this thesis green gas supply chains, based on codigestion of cow manure and maize, are considered. The produced biogas is upgraded to natural gas quality and injected into the existing distribution gas grid and thus replacing natural gas. Literature research showed that relatively much attention has been paid up to now to elements of such supply chains. Research into digestion technology, agricultural aspects of (energy) crops and logistics of biomass are examples of this. This knowledge is indispensable, but how this knowledge should be combined to help understand how future green gas systems may look like, remains a white spot in the current knowledge. This thesis is an effort to fill this gap. A practical but sound way of modeling green gassupply chains was developed, taking costs and sustainability criteria into account. The way such supply chains can deal with season dependent gas demand was also investigated. This research was further expanded into a geographical model to simulate several degrees of natural gas replacement by green gas. Finally, ways to optimize green gas supply chains in terms of energy efficiency and greenhouse gas reduction were explored.