Dienst van SURF
© 2025 SURF
The Junior Adverse Drug Event Manager (J-ADEM) team is a multifaceted intervention focusing on real-life education for medical students that has been shown to assist healthcare professionals in managing and reporting suspected adverse drug reactions (ADRs) to the Netherlands Pharmacovigilance Centre Lareb. The aim of this study was to quantify and describe the ADRs reported by the J-ADEM team and to determine the clinical potential of this approach. The J-ADEM team consisted of medical students tasked with managing and reporting ADRs in hospitalized patients. All ADRs screened and reported by J-ADEM team were recorded anonymously, and categorized and analysed descriptively. From August 2018 through January 2020, 209 patients on two wards in an academic hospital were screened for ADR events. The J-ADEM team reported 101 ADRs. Although most ADRs (67%) were first identified by healthcare professionals and then reported by the J-ADEM team, the team also reported an additional 33 not previously identified serious ADRs. In 10% of all reported ADRs, the J-ADEM team helped optimize ADR treatment. The ADR reports were largely well-documented (78%), and ADRs were classified as type A (66%), had a moderate or severe severity (85%) and were predominantly avoidable reactions (69%). This study shows that medical students are able to screen patients for ADRs, can identify previously undetected ADRs and can help optimize ADR management. They significantly increased (by 300%) the number of ADR reports submitted, showing that the J-ADEM team can make a valuable clinical contribution to hospital care.
MULTIFILE
Purpose: The aims of this study were to investigate how a variety of research methods is commonly employed to study technology and practitioner cognition. User-interface issues with infusion pumps were selected as a case because of its relevance to patient safety. Methods: Starting from a Cognitive Systems Engineering perspective, we developed an Impact Flow Diagram showing the relationship of computer technology, cognition, practitioner behavior, and system failure in the area of medical infusion devices. We subsequently conducted a systematic literature review on user-interface issues with infusion pumps, categorized the studies in terms of methods employed, and noted the usability problems found with particular methods. Next, we assigned usability problems and related methods to the levels in the Impact Flow Diagram. Results: Most study methods used to find user interface issues with infusion pumps focused on observable behavior rather than on how artifacts shape cognition and collaboration. A concerted and theorydriven application of these methods when testing infusion pumps is lacking in the literature. Detailed analysis of one case study provided an illustration of how to apply the Impact Flow Diagram, as well as how the scope of analysis may be broadened to include organizational and regulatory factors. Conclusion: Research methods to uncover use problems with technology may be used in many ways, with many different foci. We advocate the adoption of an Impact Flow Diagram perspective rather than merely focusing on usability issues in isolation. Truly advancing patient safety requires the systematic adoption of a systems perspective viewing people and technology as an ensemble, also in the design of medical device technology.