Dienst van SURF
© 2025 SURF
From the article: The ‘Axiomatic Design Methodology’ uses ‘Axioms’ that cannot be proven nor derived from physical phenomena. The axioms serve as guidelines for the design process of products and systems. The latest contribution was the addition of the ‘Complexity Axiom’ in 1999. However, the underlying theory of complexity did not get much traction by designers and their managers yet. It emphasises difficulties in the design, not primarily focussing on solutions. The ‘Theory of Complexity’ is converted to a ‘Theory of Maturity’ in this paper. It is supported with a graphical way to plot maturity as it develops. It visualises the results in a way that can be understood by all entities in a company, engineers, managers, and executives. Understanding the maturity of a system enables selection of the right measures to control it. Visualisation enables communication between the interacting parties. If successful development trajectories are understood, eventually from earlier experience, even better corrective actions can be applied. The method appears an affirmative way to graphically represent progression in design, thus presenting advances in a positive context. Though positively presented, it is not the case that the method hides problems; presumed and legitimate project progression can be quite different, which challenges the designer to understand the process. In this way, the method sends out a continuous warning to stay critical on design choices made.
This paper aims to develop a tool for measuring the clients’ maturity in smart maintenance supply networks. The assessment tool is developed and validated for corporate facilities management organizations using case studies and expert consultation. Based on application of the assessment tool in five cases, conclusions are presented about the levels of maturity found and the strengths and limitations of the assessment tool itself. Also, implications for further research are proposed.
This paper aims to develop a tool for measuring the clients’ maturity in smart maintenance supply networks. The assessment tool is developed and validated for corporate facilities management organizations using case studies and expert consultation. Based on application of the assessment tool in five cases, conclusions are presented about the levels of maturity found and the strengths and limitations of the assessment tool itself. Also, implications for further research are proposed.
MULTIFILE
This project addresses the fundamental societal problem that encryption as a technique is available since decades, but has never been widely adopted, mostly because it is too difficult or cumbersome to use for the public at large. PGP illustrates this point well: it is difficult to set-up and use, mainly because of challenges in cryptographic key management. At the same time, the need for encryption has only been growing over the years, and has become an urgent problem with stringent requirements – for instance for electronic communication between doctors and patients – in the General Data Protection Regulation (GDPR) and with systematic mass surveillance activities of internationally operating intelligence agencies. The interdisciplinary project "Encryption for all" addresses this fundamental problem via a combination of cryptographic design and user experience design. On the cryptographic side it develops identity-based and attribute-based encryption on top of the attribute-based infrastructure provided by the existing IRMA-identity platform. Identity-based encryption (IBE) is a scientifically well-established technique, which addresses the key management problem in an elegant manner, but IBE has found limited application so far. In this project it will be developed to a practically usable level, exploiting the existing IRMA platform for identification and retrieval of private keys. Attribute-based encryption (ABE) has not reached the same level of maturity yet as IBE, and will be a topic of further research in this project, since it opens up attractive new applications: like a teacher encrypting for her students only, or a company encrypting for all employees with a certain role in the company. On the user experience design side, efforts will be focused on making these encryption techniques really usable (i.e., easy to use, effective, efficient, error resistant) for everyone (e.g., also for people with disabilities or limited digital skills). To do so, an iterative, human-centred and inclusive design approach will be adopted. On a fundamental level, scientific questions will be addressed, such as how to promote the use of security and privacy-enhancing technologies through design, and whether and how usability and accessibility affect the acceptance and use of encryption tools. Here, theories of nudging and boosting and the unified theory of technology acceptance and use (known as UTAUT) will serve as a theoretical basis. On a more applied level, standards like ISO 9241-11 on usability and ISO 9241-220 on the human-centred design process will serve as a guideline. Amongst others, interface designs will be developed and focus groups, participatory design sessions, expert reviews and usability evaluations with potential users of various ages and backgrounds will be conducted, in a user experience and observation laboratory available at HAN University of Applied Sciences. In addition to meeting usability goals, ensuring that the developed encryption techniques also meet national and international accessibility standards will be a particular point of focus. With respect to usability and accessibility, the project will build on the (limited) usability design experiences with the mobile IRMA application.
The Northern Netherlands (NN) finds itself at the junction of all the big transitions. Digitalisation is essential to follow through with these. Considering this, our region has the potential to make sizeable progress if it can successfully roll out widespread digitalisation. As a hardcore transition economy, the NN may even join the European frontrunners and act as an example for other regions. It is from this challenge that the NN will start with the European Digital Innovation Hub (EDIH NN). We have chosen to specialise in the area of Autonomous Systems, which includes multiple digital technologies that are relevant for the four transitions in the NN: (1) Smart Agro, (2) Smart Manufacturing, (3) Life Science and Health and (4) Utilities, Built Environment and Mobility. In the first three-year EDIH NN wants to support more than 750 companies and lay the foundation for long-term support of all companies. The following building blocks for EDIH NN are: • A Brokerage network that will identify issues regarding digitalisation and relay these to Solution Providers (high TRL) and knowledge providers (low TRL). • A Test Before Invest network (test and demo facilities) comprising 20+ organisations that will invest in Autonomous Systems within their domain, and collaborate towards becoming a European testing ground. • A Smart Factory Accelerator to strengthen the digital maturity of companies. • An Empowerment programme to strengthen companies in the areas of DEP Technologies: Cyber Security and Artificial Intelligence. • An approach based on High Performance Computing to make digitalisation more accessible. • The Smart Makers Academy: A programme aimed at matching supply and demand around digital skills, based on individual learning outcomes. • A Funding Readiness programme to help companies that need to invest for their digitalisation strategy, in finding funding opportunities. • A network to stimulate supply and demand around Autonomous Systems
Develop a maturity model based on a quick scan to see how far a (SME) company is in awareness / activities on sustainable logistics (and the direction to zero emission city logistics: ZECL ) and (if it is possible, because this is a 2nd model) how far governments are in their ZE zone planning. Based on the quick scan, companies receive appropriate information about their relevant policy and sustainability measures (including availability of e-vehicles, etc.). Tool can be used by students to quickly reach companies around ZECL and to provide them with information directly via the results. This helps and students learn about this subject, but should also contribute to awareness among a larger group of feeding/receiving and possibly loading parties about ZECL. In addition, with sufficiently participating companies, a good picture can also arise of how far companies are now with regard to ZECL (and this could also be repeated over time in order to get a picture of the development in maturity in this area).