Dienst van SURF
© 2025 SURF
Torpedo is a digital learning environment for developing mathematical problem-solving ability through self-study for pre-service teachers in primary teacher education. To achieve this, Torpedo supports and challenges pre-service teachers’ reflection during and after solving non-routine mathematics problems. To investigate the feasibility of the Torpedo approach, 271 pre-service teachers used Torpedo during one month in a pilot study. They used and evaluated Torpedo’s reflective elements differently. The results varied from pre-service teachers who experienced that reflection really contributed to the development of their problem-solving ability, to pre-service teachers who hardly reflected. The last group consisted of those who found the problems too difficult to reflect upon and those who used Torpedo to prepare for the National Mathematics Test and preferred to do so by drill and practice. As a conclusion, the study provides clues for improving Torpedo so that it invites more reflective self-study behaviour. For pre-service teachers who consider reflection valueless, however, self-study in a digital learning environment may be insufficient to change this attitude.
A primary teacher needs mathematical problem solving ability. That is why Dutch student teachers have to show this ability in a nationwide mathematics test that contains many non-routine problems. Most student teachers prepare for this test by working on their own solving test-like problems. To what extent does these individual problem solving activities really contribute to their mathematical problem solving ability? Developing mathematical problem solving ability requires reflective mathematical behaviour. Student teachers need to mathematize and generalize problems and problem approaches, and evaluate heuristics and problem solving processes. This demands self-confidence, motivation, cognition and metacognition. To what extent do student teachers show reflective behaviour during mathematical self-study and how can we explain their study behaviour? In this study 97 student teachers from seven different teacher education institutes worked on ten non-routine problems. They were motivated because the test-like problems gave them an impression of the test and enabled them to investigate whether they were already prepared well enough. This study also shows that student teachers preparing for the test were not focused on developing their mathematical problem solving ability. They did not know that this was the goal to strive for and how to aim for it. They lacked self-confidence and knowledge to mathematize problems and problem approaches, and to evaluate the problem solving process. These results indicate that student teachers do hardly develop their mathematical problem solving ability in self-study situations. This leaves a question for future research: What do student teachers need to improve their mathematical self-study behaviour? EAPRIL Proceedings, November 29 – December 1, 2017, Hämeenlinna, Finland
This textbook is intended for a basic course in problem solving and program design needed by scientists and engineers using the TI-92. The TI-92 is an extremely powerful problem solving tool that can help you manage complicated problems quickly. We assume no prior knowledge of computers or programming, and for most of its material, high school algebra is sufficient mathematica background. It is advised that you have basic skills in using the TI-92. After the course you will become familiar with many of the programming commands and functions of the TI-92. The connection between good problem solving skills and an effective program design method, is used and applied consistently to most examples and problems in the text. We also introduce many of the programming commands and functions of the TI-92 needed to solve these problems. Each chapter ends with a number of practica problems that require analysis of programs as well as short programming exercises.