Dienst van SURF
© 2025 SURF
Presentation given at the online conference Talking the Cyprus Issue Togehter : Maritime Disputes in the Eastern Mediterranean - Session 2
MULTIFILE
The MSP Challenge uses game technology and role-play to support communication and learning for Marine/Maritime Spatial Planning. Since 2011, a role-playing game, a board game and a digital interactive simulation platform have been developed. The MSP Challenge editions have been used in workshops, conferences, education, as well as for real life stakeholder engagement. The authors give an overview of the development of the MSP Challenge and reflect on the value of the approach as an engaging and ‘fun’ tool for building mutual understanding and communicating MSP.
The 2014 EU Directive on Maritime Spatial Planning (MSP) lays down obligations for the EU Member States to establish a maritime planning process, resulting in a maritime spatial plan by 2020. Consultation should be carried out with local, national and transnational stakeholders. Stakeholder engagement in MSP is complex because of the great number and diversity of maritime stakeholders and the unfamiliarity of some of these stakeholders with MSP and its potential impact. To facilitate stakeholder engagement in MSP, the 'MSP Challenge' table top strategy game was designed and played as part of several stakeholder events in different European countries. The authors study the efficacy of the game for stakeholder engagement. Background and evaluation data of nineteen game sessions with a total of 310 stakeholders with different backgrounds were collected through post-game surveys. Furthermore, the efficacy of the game for stakeholder engagement processes, organised by competent MSP authorities in Scotland and Belgium, is studied in more detail. The results show that the board game, overall, has been a very efficient and effective way of familiarising a great diversity of stakeholders with MSP and to create meaningful interaction and learning among stakeholders in formal planning processes. However, the case studies also show that contextual factors-the level of familiarity with MSP and participants' perception to sustainability-influences the efficacy of the game.
LINK
The research proposal aims to improve the design and verification process for coastal protection works. With global sea levels rising, the Netherlands, in particular, faces the challenge of protecting its coastline from potential flooding. Four strategies for coastal protection are recognized: protection-closed (dikes, dams, dunes), protection-open (storm surge barriers), advancing the coastline (beach suppletion, reclamation), and accommodation through "living with water" concepts. The construction process of coastal protection works involves collaboration between the client and contractors. Different roles, such as project management, project control, stakeholder management, technical management, and contract management, work together to ensure the project's success. The design and verification process is crucial in coastal protection projects. The contract may include functional requirements or detailed design specifications. Design drawings with tolerances are created before construction begins. During construction and final verification, the design is measured using survey data. The accuracy of the measurement techniques used can impact the construction process and may lead to contractual issues if not properly planned. The problem addressed in the research proposal is the lack of a comprehensive and consistent process for defining and verifying design specifications in coastal protection projects. Existing documents focus on specific aspects of the process but do not provide a holistic approach. The research aims to improve the definition and verification of design specifications through a systematic review of contractual parameters and survey methods. It seeks to reduce potential claims, improve safety, enhance the competitiveness of maritime construction companies, and decrease time spent on contractual discussions. The research will have several outcomes, including a body of knowledge describing existing and best practices, a set of best practices and recommendations for verifying specific design parameters, and supporting documents such as algorithms for verification.
The maritime transport industry is facing a series of challenges due to the phasing out of fossil fuels and the challenges from decarbonization. The proposal of proper alternatives is not a straightforward process. While the current generation of ship design software offers results, there is a clear missed potential in new software technologies like machine learning and data science. This leads to the question: how can we use modern computational technologies like data analysis and machine learning to enhance the ship design process, considering the tools from the wider industry and the industry’s readiness to embrace new technologies and solutions? The obbjective of this PD project is to bridge the critical gap between the maritime industry's pressing need for innovative solutions for a more agile Ship Design Process; and the current limitations in software tools and methodologies available via the implementation into Ship Design specific software of the new generation of computational technologies available, as big data science and machine learning.