Dienst van SURF
© 2025 SURF
Summary:A novel Smart Charging strategy, based on low base allowances per charger combined with 1. clustering of chargers on the same part of the grid and 2. dynamic non guaranteed allowance, is presented in this paper. This manner of Smart Charging will allow more than 3 times the amount of chargers to be installed in the existing grid, even when the grid is already congested. The system also improves the usage of available flexibility in EV charging compared to other Smart Charging strategies. The required algorithms are tested on public chargers in Amsterdam, in some of the most intensely used parts of the Dutch grid.
The increasing rate of urbanization along with its socio-environmental impact are major global challenges. Therefore, there is a need to assess the boundaries to growth for the future development of cities by the inclusion of the assessment of the environmental carrying capacity (ECC) into spatial management. The purpose is to assess the resource dependence of a given entity. ECC is usually assessed based on indicators such as the ecological footprint (EF) and biocapacity (BC). EF is a measure of the biologically productive areas demanded by human consumption and waste production. Such areas include the space needed for regenerating food and fibers as well as sequestering the generated pollution, particularly CO2 from the combustion of fossil fuels. BC reflects the biological regeneration potential of a given area to regenerate resources as well to absorb waste. The city level EF assessment has been applied to urban zones across the world, however, there is a noticeable lack of urban EF assessments in Central Eastern Europe. Therefore, the current research is a first estimate of the EF and BC for the city of Wrocław, Poland. This study estimates the Ecological Footprint of Food (EFF) through both a top-down assessment and a hybrid top-down/bottom-up assessment. Thus, this research verifies also if results from hybrid method could be comparable with top-down approach. The bottom-up component of the hybrid analysis calculated the carbon footprint of food using the life cycle assessment (LCA) method. The top-down result ofWrocław’s EFF were 1% greater than the hybrid EFF result, 0.974 and 0.963 gha per person respectively. The result indicated that the EFF exceeded the BC of the city of Wrocław 10-fold. Such assessment support efforts to increase resource efficiency and decrease the risk associated with resources—including food security. Therefore, there is a need to verify if a city is able to satisfy the resource needs of its inhabitants while maintaining the natural capital on which they depend intact. Original article at: https://doi.org/10.3390/resources7030052 © 2018 by the authors. Licensee MDPI.
MULTIFILE
Although there is some evidence that total dietary antioxidant capacity (TDAC) is inversely associated with the presence of obesity, no longitudinal studies have been performed investigating the effect of TDAC on comprehensive measures of body composition over time. In this study, we included 4595 middle-aged and elderly participants from the Rotterdam Study, a population-based cohort. We estimated TDAC among these individuals by calculating a ferric reducing ability of plasma (FRAP) score based on data from food-frequency questionnaires. Body composition was assessed by means of dual X-ray absorptiometry at baseline and every subsequent 3-5 years. From these data, we calculated fat mass index (FMI), fat-free mass index (FFMI), android-to-gynoid fat ratio (AGR), body fat percentage (BF%) and body mass index (BMI). We also assessed hand grip strength at two time points and prevalence of sarcopenia at one time point in a subset of participants. Data were analyzed using linear mixed models or multinomial logistic regression models with multivariable adjustment. We found that higher FRAP score was associated with higher FFMI (0.091 kg/m2 per standard deviation (SD) higher FRAP score, 95% CI 0.031; 0.150), lower AGR (-0.028, 95% CI -0.053; -0.003), higher BMI (0.115, 95% CI 0.020; 0.209) and lower BF% (-0.223, 95% CI -0.383; -0.064) across follow-up after multivariable adjustment. FRAP score was not associated with hand grip strength or sarcopenia. Additional adjustment for adherence to dietary guidelines and exclusion of individuals with comorbid disease at baseline did not change our results. In conclusion, dietary intake of antioxidants may positively affect the amount of lean mass and overall body composition among the middle-aged and elderly.
While the creation of an energy deficit (ED) is required for weight loss, it is well documented that actual weight loss is generally lower than what expected based on the initially imposed ED, a result of adaptive mechanisms that are oppose to initial ED to result in energy balance at a lower set-point. In addition to leading to plateauing weight loss, these adaptive responses have also been implicated in weight regain and weight cycling (add consequences). Adaptions occur both on the intake side, leading to a hyperphagic state in which food intake is favored (elevated levels of hunger, appetite, cravings etc.), as well as on the expenditure side, as adaptive thermogenesis reduces energy expenditure through compensatory reductions in resting metabolic rate (RMR), non-exercise activity expenditure (NEAT) and the thermic effect of food (TEF). Two strategies that have been utilized to improve weight loss outcomes include increasing dietary protein content and increasing energy flux during weight loss. Preliminary data from our group and others demonstrate that both approaches - especially when combined - have the capacity to reduce the hyperphagic response and attenuate reductions in energy expenditure, thereby minimizing the adaptive mechanisms implicated in plateauing weight loss, weight regain and weight cycling. Past research has largely focused on one specific component of energy balance (e.g. hunger or RMR) rather than assessing the impact of these strategies on all components of energy balance. Given that all components of energy balance are strongly connected with each other and therefore can potentially negate beneficial impacts on one specific component, the primary objective of this application is to use a comprehensive approach that integrates all components of energy balance to quantify the changes in response to a high protein and high energy flux, alone and in combination, during weight loss (Fig 1). Our central hypothesis is that a combination of high protein intake and high energy flux will be most effective at minimizing both metabolic and behavioral adaptations in several components of energy balance such that the hyperphagic state and adaptive thermogenesis are attenuated to lead to superior weight loss results and long-term weight maintenance.
Based on the model outcomes, Houtlaan’s energy transition will likely result in congestion and curtailmentproblems on the local electricity grid within the next 5-7 years, possibly sooner if load imbalance between phasesis not properly addressed.During simulations, the issue of curtailment was observed in significant quantities on one cable, resulting in aloss of 8.292 kWh of PV production per year in 2030. This issue could be addressed by moving some of thehouses on the affects cable to a neighboring under-utilized cable, or by installing a battery system near the end ofthe affected cable. Due to the layout of the grid, moving the last 7 houses on the affected cable to the neighboringcable should be relatively simple and cost-effective, and help to alleviate issues of curtailment.During simulations, the issue of grid overloading occurred largely as a result of EV charging. This issue can bestbe addressed by regulating EV charging. Based on current statistics, the bulk of EV charging is expected to occurin the early evening. By prolonging these charge cycles into the night and early morning, grid overloading canlikely be prevented for the coming decade. However, such a control system will require some sort of infrastructureto coordinate the different EV charge cycles or will require smart EV chargers which will charge preferentiallywhen the grid voltage is above a certain threshold (i.e., has more capacity available).A community battery system can be used to increase the local consumption of produced electricity within theneighborhood. Such a system can also be complemented by charging EV during surplus production hours.However, due to the relatively high cost of batteries at present, and losses due to inefficiencies, such a systemwill not be financially feasible without some form of subsidy and/or unless it can provide an energy service whichthe grid operator is willing to pay for (e.g. regulating power quality or line voltage, prolonging the lifetime of gridinfrastructure, etc.).A community battery may be most useful as a temporary solution when problems on the grid begin to occur, untila more cost-effective solution can be implemented (e.g. reinforcing the grid, implementing an EV charge controlsystem). Once a more permanent solution is implemented, the battery could then be re-used elsewhere.The neighborhood of Houtlaan in Assen, the Netherlands, has ambitious targets for reducing the neighborhood’scarbon emissions and increasing their production of their own, sustainable energy. Specifically, they wish toincrease the percentage of houses with a heat pump, electric vehicle (EV) and solar panels (PV) to 60%, 70%and 80%, respectively, by the year 2030. However, it was unclear what the impacts of this transition would be onthe electricity grid, and what limitations or problems might be encountered along the way.Therefore, a study was carried out to model the future energy load and production patterns in Houtlaan. Thepurpose of the model was to identify and quantify the problems which could be encountered if no steps are takento prevent these problems. In addition, the model was used to simulate the effectiveness of various proposedsolutions to reduce or eliminate the problems which were identified
Brandweermensen lopen het meeste gevaar als ze onder tijdsdruk een gebouw moeten verkennen, of een brand moeten blussen terwijl de situatie nog niet goed kan worden overzien. Omvallende muren, instortende plafonds of gewoon gestruikeld over door de rook onzichtbare brokstukken leiden tot vermijdbare letsels of zelfs slachtoffers. Met name de inzet bij branden in stedelijke parkeergarages onder woontorens vormen een enorm risico. Het inzetten van onbemande, op afstand bestuurbare voertuigen voor verkenning en bluswerk is een oplossing die binnen de brandweer breed wordt gedragen. De brandweer moet deze innovatieve technologie echter zien te omarmen. Zij werken nu vanuit hun intuïtie en weten direct hoe te acteren op basis van wat zij waarnemen. Praktijkgericht onderzoek heeft echter uitgewezen dat scepsis over de inzet van blusplatforms bij incidenten plaats heeft gemaakt voor zeker vertrouwen. Een blusplatform, voorzien van juiste sensoren kan de Officier van Dienst (OVD) ondersteunen bij het nemen van een beslissing om al dan niet tot een ‘aanval’ over te gaan. Praktijktesten hebben echter laten zien dat de huidige blusplatforms nog niet optimaal functioneren om als volwaardig ‘teamlid’ te kunnen worden ingezet. Dit heeft enerzijds met technologische ontwikkelingen (sensoren en communicatieverbindingen) te maken, maar anderzijds moet de informatievoorziening (human-machine interfacing) naar de brandweer beter worden afgestemd. In dit project gaan Saxion, het instituut fysieke veiligheid, de universiteit Twente, het bedrijfsleven en vijf veiligheidsregio’s onderzoeken hoe en wanneer innovatieve blusplatforms op een intuïtieve manier kunnen worden ingezet door training én (kleine) productaanpassing zodat deze een volwaardig onderdeel kunnen zijn van het brandweerkorps. Een blusplatform kan letselschade en slachtoffers voorkomen, mits goed ingezet en vertrouwd door de mensen die daarvan afhankelijk zijn. Het vak van brandweer, als beroeps of vrijwilliger, is een van de gevaarlijkste die er is. Laten we er samen voor zorgen dat het iets veiliger kan worden.