Dienst van SURF
© 2025 SURF
Electrification of residential areas is increasingly common. Major areas of development include rooftop solar panels, electric vehicles and heat pumps. However, existing grid components may have insufficient network capacity to accommodate the resulting electricity flows. Battery energy storage (BES) can be used to prevent transformer overloading resulting from electrification. Ideally, BES should be sized and placed such that it can prevent overloading with a minimum amount of storage capacity, but it is unclear how load characteristics affect BES capacity requirements. This study investigated how load simultaneity affects the minimum BES capacity required to prevent transformer overloading, comparing a central with a distributed BES layout. It was found that as simultaneity increases, distributed storage requires relatively less capacity than central storage. This is likely due to the reduced ability of central BES to share capacity between connections as simultaneity increases, and the ability of distributed BES to better reduce transportation losses.
Electrification of residential areas is increasingly common. Major areas of development include promoting rooftop solar panels, electric vehicles and heat pumps. However, existing grid components may have insufficient capacity to support the resulting electricity flows. Battery energy storage (BES) can be used to prevent transformer overloading resulting from electrification. Ideally, BES should be sized and placed such that it can prevent overloading with a minimum amount of storage capacity, but it is unclear how load characteristics affect BES capacity requirements. This study investigated how load simultaneity affects the minimum BES capacity required to prevent transformer overloading, comparing a central with a decentral BES configuration. It was found that as simultaneity increases, decentral storage requires relatively less capacity than central storage. This is likely due to the reduced ability of central BES to share capacity between connections with higher simultaneity, and the ability of decentral BES to better reduce transportation losses.
Battery energy storage (BES) can provide many grid services, such as power flow management to reduce distribution grid overloading. It is desirable to minimise BES storage capacities to reduce investment costs. However, it is not always clear how battery sizing is affected by battery siting and power flow simultaneity (PFS). This paper describes a method to compare the battery capacity required to provide grid services for different battery siting configurations and variable PFSs. The method was implemented by modelling a standard test grid with artificial power flow patterns and different battery siting configurations. The storage capacity of each configuration was minimised to determine how these variables affect the minimum storage capacity required to maintain power flows below a given threshold. In this case, a battery located at the transformer required 10–20% more capacity than a battery located centrally on the grid, or several batteries distributed throughout the grid, depending on PFS. The differences in capacity requirements were largely attributed to the ability of a BES configuration to mitigate network losses. The method presented in this paper can be used to compare BES capacity requirements for different battery siting configurations, power flow patterns, grid services, and grid characteristics.
Residential electricity distribution grid capacityis based on the typical peak load of a house and the loadsimultaneity factor. Historically, these values have remainedpredictable, but this is expected to change due to increasingelectric heating using heat pumps and rooftop solar panelelectricity generation. It is currently unclear how this increasein electrification will impact household peak load and loadsimultaneity, and hence the required grid capacity of residentialelectricity distribution grids. To gain better insight, transformerand household load measurements were taken in an all-electricneighborhood over a period of three years. These measurementswere analyzed to determine how heat pumps and solar panelswill alter peak load and load simultaneity and hence gridcapacity design parameters. Moreover, the potential for smartgrids to reduce peak loads and load simultaneity, and hencereduce required grid capacities, was examined.