Dienst van SURF
© 2025 SURF
Existing research on the recognition of Activities of Daily Living (ADL) from simple sensor networks assumes that only a single person is present in the home. In real life there will be situations where the inhabitant receives visits from family members or professional health care givers. In such cases activity recognition is unreliable. In this paper, we investigate the problem of detecting multiple persons in an environment equipped with a sensor network consisting of binary sensors. We conduct a real-life experiment for detection of visits in the oce of the supervisor where the oce is equipped with a video camera to record the ground truth. We collected data during two months and used two models, a Naive Bayes Classier and a Hidden Markov Model for a visitor detection. An evaluation of these two models shows that we achieve an accuracy of 83% with the NBC and an accuracy of 92% with a HMM, respectively.
MULTIFILE
This paper describes the approach used to identify elderly people’s needs and attitudes towards applying ambient sensor systems for monitoring daily activities in the home. As elderly are typically unfamiliar with such ambient technology, interactive tools for explicating sensor monitoring –an interactive dollhouse and iPad applications for displaying live monitored sensor activity data– were developed and used for this study. Furthermore, four studies conducted by occupational therapists with more than 60 elderly participants –including questionnaires (n=41), interviews (n=6), user sessions (n=14) and field studies (n=2)– were conducted. The experiences from these studies suggest that this approach helped to democratically engage the elderly as end-user and identify acceptance issues.
Ambient activity monitoring systems produce large amounts of data, which can be used for health monitoring. The problem is that patterns in this data reflecting health status are not identified yet. In this paper the possibility is explored of predicting the functional health status (the motor score of AMPS = Assessment of Motor and Process Skills) of a person from data of binary ambient sensors. Data is collected of five independently living elderly people. Based on expert knowledge, features are extracted from the sensor data and several subsets are selected. We use standard linear regression and Gaussian processes for mapping the features to the functional status and predict the status of a test person using a leave-oneperson-out cross validation. The results show that Gaussian processes perform better than the linear regression model, and that both models perform better with the basic feature set than with location or transition based features. Some suggestions are provided for better feature extraction and selection for the purpose of health monitoring. These results indicate that automated functional health assessment is possible, but some challenges lie ahead. The most important challenge is eliciting expert knowledge and translating that into quantifiable features.
The bi-directional communication link with the physical system is one of the main distinguishing features of the Digital Twin paradigm. This continuous flow of data and information, along its entire life cycle, is what makes a Digital Twin a dynamic and evolving entity and not merely a high-fidelity copy. There is an increasing realisation of the importance of a well functioning digital twin in critical infrastructures, such as water networks. Configuration of water network assets, such as valves, pumps, boosters and reservoirs, must be carefully managed and the water flows rerouted, often manually, which is a slow and costly process. The state of the art water management systems assume a relatively static physical model that requires manual corrections. Any change in the network conditions or topology due to degraded control mechanisms, ongoing maintenance, or changes in the external context situation, such as a heat wave, makes the existing model diverge from the reality. Our project proposes a unique approach to real-time monitoring of the water network that can handle automated changes of the model, based on the measured discrepancy of the model with the obtained IoT sensor data. We aim at an evolutionary approach that can apply detected changes to the model and update it in real-time without the need for any additional model validation and calibration. The state of the art deep learning algorithms will be applied to create a machine-learning data-driven simulation of the water network system. Moreover, unlike most research that is focused on detection of network problems and sensor faults, we will investigate the possibility of making a step further and continue using the degraded network and malfunctioning sensors until the maintenance and repairs can take place, which can take a long time. We will create a formal model and analyse the effect on data readings of different malfunctions, to construct a mitigating mechanism that is tailor-made for each malfunction type and allows to continue using the data, albeit in a limited capacity.