Dienst van SURF
© 2025 SURF
Health symptoms may be influenced, supported, or even controlled via a lighting control system which includes personal lighting conditions and personal factors (health characteristics). In order to be effective, this lighting control system requires both continuous information on the lighting and health conditions at the individual level. A new practical method to determine these continuous personal lighting conditions has been developed: location-bound estimations (LBE). This method was validated in the field in two case studies; comparisons were made between the LBE and location-bound measurements (LBM) in case study 1 and between the LBE and person-bound measurements (PBM) in case study 2. Overall, the relative deviation between the LBE and LBM was less than 15%, whereas the relative deviation between the LBE and PBM was 32.9% in the best-case situation. The relative deviation depends on inaccuracies in both methods (i.e., LBE and PBM) and needs further research. Adding more input parameters to the predictive model (LBE) will improve the accuracy of the LBE. The proposed first approach of the LBE is not without limitations; however, it is expected that this practical method will be a pragmatic approach of inserting personal lighting conditions into lighting control systems.
Journal of Physics: Conference Series Paper • The following article is Open access Exploring the relationship between light and subjective alertness using personal lighting conditions J. van Duijnhoven1, M.P.J. Aarts1, E.R. van den Heuvel2 and H.S.M. Kort3,4 Published under licence by IOP Publishing Ltd Journal of Physics: Conference Series, Volume 2042, CISBAT 2021 Carbon-neutral cities - energy efficiency and renewables in the digital era 8-10 September 2021, EPFL Lausanne, Switzerland Citation J. van Duijnhoven et al 2021 J. Phys.: Conf. Ser. 2042 012119 Download Article PDF References Download PDF 29 Total downloads Turn on MathJax Share this article Share this content via email Share on Facebook (opens new window) Share on Twitter (opens new window) Share on Mendeley (opens new window) Hide article information Author e-mails j.v.duijnhoven1@tue.nl Author affiliations 1 Building Lighting Group, Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands 2 Stochastics, Department of Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, The Netherlands 3 Research Centre Healthy and Sustainable Living, University of Applied Sciences Utrecht, Utrecht, The Netherlands 4 Building Healthy Environments for Future Users Group, Department of the Built Environment, Eindhoven University of Technology, Eindhoven, The Netherlands DOI https://doi.org/10.1088/1742-6596/2042/1/012119 Buy this article in print Journal RSS Sign up for new issue notifications Create citation alert Abstract The discovery of the ipRGCs was thought to fully explain the mechanism behind the relationship between light and effects beyond vision such as alertness. However, this relationship turned out to be more complicated. The current paper describes, by using personal lighting conditions in a field study, further exploration of the relationship between light and subjective alertness during daytime. Findings show that this relationship is highly dependent on the individual. Although nearly all dose-response curves between personal lighting conditions and subjective alertness determined in this study turned out to be not significant, the results may be of high importance in the exploration of the exact relationship.
MULTIFILE
Light enables us to see and perceive our environment but it also initiates effects beyond vision, such as alertness. Literature describes that at least six factors are relevant for initiating effects beyond vision. The exact relationship between these factors and alertness is not yet fully understood. In the current field study, personal lighting conditions of 62 Dutch office workers (aged 49.7 ± 11.4 years) were continuously measured and simultaneously self-reported activities and locations during the day were gathered via diaries. Each office worker participated 10 working days in spring 2017. Personal lighting conditions were interpreted based on four of the six factors (light quantity, spectrum, timing, and duration of light exposure). Large individual differences were found for the daily luminous exposures, illuminances, correlated colour temperatures, and irradiances measured with the blue sensor area of the dosimeter. The average illuminance (over all participants and all days) over the course of the day peaked three times. The analysis of the duration of light exposure demonstrated that the participants were on average only exposed to an illuminance above 1000 lx for 72 minutes per day. The interpretation of personal lighting conditions based on the four factors provides essential information since all of these factors may be relevant for initiating effects beyond vision. The findings in the current paper give first in-depth insight in the possibilities to interpret personal lighting conditions of office workers.
MULTIFILE
Horticulture crops and plants use only a limited part of the solar spectrum for their growth, the photosynthetically active radiation (PAR); even within PAR, different spectral regions have different functionality for plant growth, and so different light spectra are used to influence different properties of the plant, such as leaves, fruiting, longer stems and other plant properties. Artificial lighting, typically with LEDs, has been used to provide these specified spectra per plant, defined by their light recipe. This light is called steering light. While the natural sunlight provides a much more sustainable and abundant form of energy, however, the solar spectrum is not tuned towards specific plant needs. In this project, we capitalize on recent breakthroughs in nanoscience to optimally shape the solar spectrum, and produce a spectrally selective steering light, i.e. convert the energy of the entire solar spectrum into a spectrum most useful for agriculture and plant growth to utilize the sustainable solar energy to its fullest, and save on artificial lighting and electricity. We will take advantage of the developed light recipes and create a sustainable alternative to LED steering light, using nanomaterials to optimally shape the natural sunlight spectrum, while maintaining the increased yields. As a proof of concept, we are targeting the compactness of ornamental plants and seek to steer the plants’ growth to reduce leaf extension and thus be more valuable. To realize this project the Peter Schall group at the UvA leads this effort together with the university spinout, SolarFoil, whose expertise lies in the development of spectral conversion layers for horticulture. Renolit - a plastic manufacturer and Chemtrix, expert in flow synthesis, provide expertise and technical support to scale the foil, while Ludvig-Svensson, a pioneer in greenhouse climate screens, provides the desired light specifications and tests the foil in a controlled setting.
The project focuses on sustainable travel attitude and behaviour with attention to balance, liveability, impact and climate change (as indicated above). The customer journey is approached from the consumer side and intends to shed light on the way COVID-19 has influenced (or not) the following aspects:• consumer’s understanding and appreciation of sustainability • the extent to which this understanding has influenced their attitude towards sustainable travel choices• the extent to which this change is represented in their actual and projected travel behaviour throughout the travel decision-making process • conditions that may foster a more sustainable travel behaviourThe project can be seen as a follow up to existing studies on travel intention during and post COVID-19, such as ETC’s publication on Monitoring sentiment for domestic and Intra-European travel – Wave 5, or the joint study of the European Tourism Futures Institute (ETFI – www.etfi.nl) and the Centre of Expertise in Leisure, Tourism and Hospitality (CELTH – www.celth.nl) highlighting four future scenarios for the leisure, tourism and hospitality sectors post COVID-19. The project will look beyond travel intention and will supplement existing knowledge with crucial information on the way consumers view sustainability and the extent to which they are willing to adjust their travel behaviour to aid the recovery of a more sustainable travel and tourism industry. Therefore, the report aims to generate knowledge vital for the understanding of consumer trends and the role sustainability will play in travel choices in the near future.Problem statementPlease describe which question in the (participating) industry is addressed.How has the sustainable travel attitude and behaviour in selected European source markets been influenced by the COVID-19 pandemic? Further questions to be answered:• How did the COVID-19 pandemic influence the consumer’s understanding and appreciation of sustainability?• To what extent did this understanding influence their attitude towards sustainable travel choices?• To what extent is this change represented in their actual and projected travel behaviour throughout the travel decision-making process?• What are the conditions that may foster a more sustainable travel behaviour?
In this project, the AGM R&D team developed and refined the use of a facial scanning rig. The rig is a physical device comprising multiple cameras and lighting that are mounted on scaffolding around a 'scanning volume'. This is an area at which objects are placed before being photographed from multiple angles. The object is typically a person's head, but it can be anything of this approximate size. Software compares the photographs to create a digital 3D recreation - this process is called photogrammetry. The 3D model is then processed by further pieces of software and eventually becomes a face that can be animated inside in Unreal Engine, which is a popular piece of game development software made by the company Epic. This project was funded by Epic's 'Megagrant' system, and the focus of the work is on streamlining and automating the processing pipeline, and on improving the quality of the resulting output. Additional work has been done on skin shaders (simulating the quality of real skin in a digital form) and the use of AI to re/create lifelike hair styles. The R&D work has produced significant savings in regards to the processing time and the quality of facial scans, has produced a system that has benefitted the educational offering of BUas, and has attracted collaborators from the commercial entertainment/simulation industries. This work complements and extends previous work done on the VIBE project, where the focus was on creating lifelike human avatars for the medical industry.