Dienst van SURF
© 2025 SURF
CC-BY Applied Ergonomics, 2021, March https://www.journals.elsevier.com/applied-ergonomics Purpose: To analyze progression of changes in kinematics and work physiology during progressive lifting in healthy adults.Methods: Healthy participants were recruited. A standardized lifting test from the WorkWell Functional Capacity Evaluation (FCE) was administered, with five progressive lifting low series of five repetitions. The criteria of the WorkWell observation protocol were studied: changes in muscle use (EMG), heart rate (heart rate monitor), base of support, posture and movement pattern (motion capture system). Repeated measures ANOVA’s were used to analyze changes during progressive workloads.Results: 18 healthy young adults participated (8 men, 10 women; mean age 22 years). Mean maximum weight lifted was 66 (±3.2) and 44 (±7.4) kg for men and women, respectively. With progressive loads, statistically significant (p < 0.01) differences were observed: increase in secondary muscle use at moderate lifting, increase of heart rate, increase of base of support and movement pattern changes were observed; differences in posture were not significant.Conclusions: Changes in 4 out of 5 kinematic and work physiology parameters were objectively quantified using lab technology during progressive lifting in healthy adults. These changes appear in line with existing observation criteria.
MULTIFILE
We developed an evidence-based practice guideline to support occupational safety and health (OSH) professionals in assessing the risk due to lifting and in selecting effective preventive measures for low back pain (LBP) in the Netherlands. The guideline was developed at the request of the Dutch government by a project team of experts and OSH professionals in lifting and work-related LBP. The recommendations for risk assessment were based on the quality of instruments to assess the risk on LBP due to lifting. Recommendations for interventions were based on a systematic review of the effects of worker- and work directed interventions to reduce back load due to lifting. The quality of the evidence was rated as strong (A), moderate (B), limited (C) or based on consensus (D). Finally, eight experts and twenty-four OSH professionals commented on and evaluated the content and the feasibility of the preliminary guideline. For risk assessment we recommend loads heavier than 25 kg always to be considered a risk for LBP while loads less than 3 kg do not pose a risk. For loads between 3-25 kg, risk assessment shall be performed using the Manual handling Assessment Charts (MAC)-Tool or National Institute for Occupational Safety and Health (NIOSH) lifting equation. Effective work oriented interventions are patient lifting devices (Level A) and lifting devices for goods (Level C), optimizing working height (Level A) and reducing load mass (Level C). Ineffective work oriented preventive measures are regulations to ban lifting without proper alternatives (Level D). We do not recommend worker-oriented interventions but consider personal lift assist devices as promising (Level C). Ineffective worker-oriented preventive measures are training in lifting technique (Level A), use of back-belts (Level A) and pre-employment medical examinations (Level A). This multidisciplinary evidence-based practice guideline gives clear criteria whether an employee is at risk for LBP while lifting and provides an easy-reference for (in)effective risk reduction measures based on scientific evidence, experience, and consensus among OSH experts and practitioners.
MULTIFILE
BACKGROUND: Physical therapists' recommendations to patients to avoid daily physical activity can be influenced by the therapists' kinesiophobic beliefs. Little is known about the amount of influence of a physical therapist's kinesiophobic beliefs on a patient's actual lifting capacity during a lifting test.OBJECTIVE: The objective of this study was to determine the influence of physical therapists' kinesiophobic beliefs on lifting capacity in healthy people.DESIGN: A blinded, cluster-randomized cross-sectional study was performed.METHODS: The participants (n=256; 105 male, 151 female) were physical therapist students who performed a lifting capacity test. Examiners (n=24) were selected from second-year physical therapist students. Participants in group A (n=124) were tested in the presence of an examiner with high scores on the Tampa Scale of Kinesiophobia for health care providers (TSK-HC), and those in group B (n=132) were tested in the presence of an examiner with low scores on the TSK-HC. Mixed-model analyses were performed on lifting capacity to test for possible (interacting) effects.RESULTS: Mean lifting capacity was 32.1 kg (SD=13.6) in group A and 39.6 kg (SD=16.4) in group B. Mixed-model analyses revealed that after controlling for sex, body weight, self-efficacy, and the interaction between the examiners' and participants' kinesiophobic beliefs, the influence of examiners' kinesiophobic beliefs significantly reduced lifting capacity by 14.4 kg in participants with kinesiophobic beliefs and 8.0 kg in those without kinesiophobic beliefs.LIMITATIONS: Generalizability to physical therapists and patients with pain should be studied.CONCLUSIONS: Physical therapists' kinesiophobic beliefs negatively influence lifting capacity of healthy adults. During everyday clinical practice, physical therapists should be aware of the influence of their kinesiophobic beliefs on patients' functional ability.
The DALI project is carried out under the flag of Logistics Community Brabant. DALI is a testing ground aimed at lifting datafication in the logistics sector of the south of the Netherlands to a higher level, consequently future-proofing the sector.DALI focuses on developing knowledge-intensive logistics (smart logistics): devising, developing, demonstrating and applying new logistics working methods. The project’s aim is to create higher added value, increase the efficiency of goods flow handling, and maintain our international market position.Within DALI, 18 companies are carrying out cases in the area of datafication. The findings from the business cases are translated into generic applications for the logistics and supply chain sector and education. In addition, they are developing a community of data and logistics specialists.Partners:LCB, Gemeenten Breda en Tilburg, REWIN, Midpoint Brabant, Ministerie van Economische Zaken en Klimaat, Rijksoverheid, Provincie Noord-Brabant, Regio West-Brabant, Regio Hart van Brabant.In Dutch:Proeftuin van logistieke innovatie. DALI is een project waarin 18 bedrijven pilots uitvoeren om met datatoepassingen processen in de logistiek en supply chain te verslimmen. Vanuit deze pilots worden generieke toepassingen en tools op het gebied van data ontwikkeld voor MKB-bedrijven en het onderwijs.