Dienst van SURF
© 2025 SURF
Martien Visser roept de Tweede Kamer op om met de nieuwe Energiewet het fundament te leggen voor de energietransitie. Hij stelt: “Schrap het Groepsverbod en de stringente beperkingen. Creëer daarmee een level playing field in Europa en geef de publieke aandeelhouders het vertrouwen en maximaal de ruimte hun infrabedrijven in te zetten om de energietransitie vaart te geven.
LINK
Modifiable (biomechanical and neuromuscular) anterior cruciate ligament (ACL) injury risk factors have been identified in laboratory settings. These risk factors were subsequently used in ACL injury prevention measures. Due to the lack of ecological validity, the use of on-field data in the ACL injury risk screening is increasingly advocated. Though, the kinematic differences between laboratory and on-field settings have never been investigated. The aim of the present study was to investigate the lower-limb kinematics of female footballers during agility movements performed both in laboratory and football field environments. Twenty-eight healthy young female talented football (soccer) players (14.9 ± 0.9 years) participated. Lower-limb joint kinematics was collected through wearable inertial sensors (Xsens Link) in three conditions: (1) laboratory setting during unanticipated sidestep cutting at 40-50°; on the football pitch (2) football-specific exercises (F-EX) and (3) football games (F-GAME). A hierarchical two-level random effect model in Statistical Parametric Mapping was used to compare joint kinematics among the conditions. Waveform consistency was investigated through Pearson's correlation coefficient and standardized z-score vector. In-lab kinematics differed from the on-field ones, while the latter were similar in overall shape and peaks. Lower sagittal plane range of motion, greater ankle eversion, and pelvic rotation were found for on-field kinematics (p < 0.044). The largest differences were found during landing and weight acceptance. The biomechanical differences between lab and field settings suggest the application of context-related adaptations in female footballers and have implications in ACL injury prevention strategies. Highlights: Talented youth female football players showed kinematical differences between the lab condition and the on-field ones, thus adopting a context-related motor strategy. Lower sagittal plane range of motion, greater ankle eversion, and pelvic rotation were found on the field. Such differences pertain to the ACL injury mechanism and prevention strategies. Preventative training should support the adoption of non-linear motor learning to stimulate greater self-organization and adaptability. It is recommended to test football players in an ecological environment to improve subsequent primary ACL injury prevention programmes.
Electronic Sports (esports) is a form of digital entertainment, referred to as "an organised and competitive approach to playing computer games". Its popularity is growing rapidly as a result of an increased prevalence of online gaming, accessibility to technology and access to elite competition.Esports teams are always looking to improve their performance, but with fast-paced interaction, it can be difficult to establish where and how performance can be improved. While qualitative methods are commonly employed and effective, their widespread use provides little differentiation among competitors and struggles with pinpointing specific issues during fast interactions. This is where recent developments in both wearable sensor technology and machine learning can offer a solution. They enable a deep dive into player reactions and strategies, offering insights that surpass traditional qualitative coaching techniquesBy combining insights from gameplay data, team communication data, physiological measurements, and visual tracking, this project aims to develop comprehensive tools that coaches and players can use to gain insight into the performance of individual players and teams, thereby aiming to improve competitive outcomes. Societal IssueAt a societal level, the project aims to revolutionize esports coaching and performance analysis, providing teams with a multi-faceted view of their gameplay. The success of this project could lead to widespread adoption of similar technologies in other competitive fields. At a scientific level, the project could be the starting point for establishing and maintaining further collaboration within the Dutch esports research domain. It will enhance the contribution from Dutch universities to esports research and foster discussions on optimizing coaching and performance analytics. In addition, the study into capturing and analysing gameplay and player data can help deepen our understanding into the intricacies and complexities of teamwork and team performance in high-paced situations/environments. Collaborating partnersTilburg University, Breda Guardians.
Indonesia’s peat forests remain severely threatened by forest fires, oil palm plantation development and extractive industries, which leads to biodiversity loss, increased emissions of greenhouse gases, and the marginalization of Indigenous Peoples and local communities. In 2008 the Government of Indonesia introduced the Social Forestry Programme under which Indigenous Peoples and local communities can acquire a 35-year management permit. Since then, about 10 percent of Indonesian State Forest has been designated for community-based forest conservation and restoration initiatives. The devolution of authority to the local level has created a new playing field. The Social Forestry Programme reverses more than a century of centralistic forest policy, and requires a fundamental re-orientation of all actors working in the forestry sector. The central question underlying this proposal is how Dutch civil society organizations (applied universities and NGOs) can effectively support Indigenous Peoples and local communities in the protection and restoration of peat forests in Indonesia. This project aims to set up a Living Lab in Ketapang District in West Kalimantan to study, identify and test novel ways to work together with a variety of stakeholders to effectively conserve and restore peat forest. In Ketapang District, Tropenbos Indonesia has assisted three Village Forest Management Groups (Pematang Gadung, Sungai Pelang and Sungai Besar) in securing a Social Forestry Permit. Students from three Dutch Universities (Van Hall Larenstein, Aeres Hogeschool and Inholland) will conduct research in partnership with students from Universitas Tanjungpura on the integration of local ecological knowledge and technical expertise, on the economic feasibility of community-based forestry enterprises, and on new polycentric governance structures. The results of these studies will be disseminated to policy makers and civil society groups working in Indonesia, using the extensive networks of IUCN NL and Tropenbos Indonesia.